Chapter 4
NUMERICAL SOLUTION

4.1. Explicit and Implicit Schemes

Exact solutions of differential equations introduced in Chapter 2 present many
difficulties. Thus, we will use approximate integration methods that are easily generalized
for the space discrete equations [7]. The differential equations can be written in matrix

notation as:
1= RI | | @11)

where [x] - the eigenvector whose elements {x;}, may be power, precursor
concentrations, mass, flow, enthalpy, pressure, etc., and
[R] - the matrix whose elements {0y} are the eigenvalues of [x].
In general, equation (4.1.1) is noniinear, since [R] varies in a complicated fashion as a
function of time. We will suppose that the operator [R] is constant during a given transient
from time t to t+At,

The time derivative in (4.1.1) is replaced by:
& = ) D
Explicit Scheme: '
In the explicit method, the right hand side of (4.1.1) is replaced by [R][x']. In this
case, (4.1.1) becomes:
x4 = (1] + [RIAD[X] (4.12)
where [1] is the unit matrix.

Formally, the exact solution of differential equation (4.1.1) is an exponential of the matrix

[R] as

[x"*] = exp((R]AD[X].
The truncation error is the difference between an approximate solution and the exact
solution. Consequently, the truncation error ET of the explicit method is given by:

ET = {[1] + [R]At - exp((R1AD)} ]

Expanding the matrix exponential gives

ET = ([1] + [R]At - [1] - [R]At % [RPPAE - )X] = -;— [RPAPEX'].
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Therefore, the truncation error of the explicit method is of order 3 At
The row i of (4.1.2) in the actmal form is:
N .
x4 = (oADK + 3 (1+ o, ADX, (4.1.3)
I

It can be notéd that, for negative eigenvalues, at some value of At the factor (1-+0uiAt) can.
go negative, causing each subsequent evaluation of x"™ to oscillate in sign and go
unstable, Therefore, the choice of At must be restricted to give a stable solution.
Otherwise, spurious oscillations of quickly increasing amplitudes will overtake the
solution.

The explicit scheme is simple and easy to implement.

Implicit Scheme:
1n the implicit method, the right hand side of (4.1.1) is replaced by [R][x"*]. After
regrouping the terms in [x'"*"], we have
[x*#] = {[1] - [R]At} [x] (4.14)
The truncation error is obtained from the difference between the approximat solution and

the exact solution:

ET = {([1] - [RIAt)" - exp([R]AD)} [X]

< (@] + [RIACHRTAE +..) - (1) + [RIA+ [RPAE + ) [K)
I
= SIRFACIX]

. LA d . 1
Thus, the truncation error of the implicit method is of order 3 At%, the same as that of the

explicit method.
Similarly, the row i of (4.1.4) can be written in the following form:

X!+ ALY, o

x4 = 1_‘:_ o (4.1.5)

The eigenvalues can often be large and negative. Consequently, the contributions due-to

large negative eigenvalues, , decay away as At — co, Thus, the implicit scheme

1
1-o. At

11

tends to behave very well at large time steps. Positive eigenvalues pose a threat to the
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implicit form. However, this is not a practical problem because the products of an
eigenvalue by At is kept much less than 1, 0GiAt << 1, for accuracy reasons [5].

The implic{t method requires the matrix inversion in order to have the solution at
the next time step. This matrix can change at each time interval, so the matrix inversion
will have to be performed at each time interval. It requires more calculation effort and time
than the explicit method. |

Although the explicit method is very easy to implement, the need to have a very
small time step will result in the total computation time required for a transient to be much
more than for the implicit scheme. It is therefore preferable to apply the implicit scheme.
However, for large size matrices, it is quite costly to perform the addition and
multiplication of matrices as well as to do a matrix inversion. To avoid this, we prefer to
use an iteration technique for solving the system of algebraic equations into which (4.1.5)
can be transformed. The sys;tem of algebraic equations can be written in matrix notation as:

[Alix] = [b] (4.1.6)

Jacobi method:
The matrix [A] is split in the f‘ollo“}ing way.
[A]=[L] +[D]+ [U]
where [D]  diagonal matrix, containing only diagonal elements of {Al,
[L]  lower triangular matﬁx, containing those elements of [A] that are beliow
the diagonal of [A],
[U] upper triangular matrix, containing those elements of [A] that are above the
diagonal of [A].
The Jacobi method is obtained by sending to the right hand side all the terms that are not
on the diagonal:
[DIEx] ™" = (L] + (UDx]® + [b], @.17)
~ consequently,
[x]**" = -[D]"*([L] + [UDIx]® + [DI'[b] (4.18)
where the index X is denoted to the k-th iteration.
Substituting [M] = -[D]([L] + [U}) and [g] = [D]"[b], we get
[x]*" = pMIx]Y + [g] (4.1.9)
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The vector [x]“*? does not repiace the vector [x]* until the end of iteration k. The matrix
[M] is said to be convergent if |

lim [MJ* = 0, here k is an exponent.

k—toa
If [M] is convergent, at some iteration K we will find that

[x)* ~ [x]® and {x] = [x]"".
Jacobi’s method is rarely used in practice because of two reasons. First, the two vectors
[x]* and [x]*" are kept in memory at the same time. Other, it has a poor rate of

convergence as compared to other methods.

Gauss-Seidel Method:

Gauss-Seidel method resembles the Jacobi method. However, it uses in the
calculation sequence the new elements of [x]*" as soon as they are available. Only one
vector has to be kept in memory, and it contains both old and new elements.

In terms of the decomposition of the matrix [A] we have

D]V = -LI]™™ - [UIx]® + [b], - (4110
consequently,

[x]"! = -[DI"[L][x}*" - PI'[U]x]® + [DI'[b]  (4.1.11)

Gauss-Seide} has a better rate of convergence than the Jacobi method, 1t can be
| proved that if the matrix [A] is diagonally dominant, ie. each diagonal element is larger in
modulus than the sum of the moduli of other elements in its row, :chen Gauss-Seidel

method will converge [8].
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4.2. Point Kinetics
If the explicit scheme is applied to the point kinetics equations, the stability

A
condition is rather restrictive: time steps must be smaller than 2-— [7]. Thus, for the

p
DNRR,
A -5
At < 2~B- = 2x5.107/0.0081 = 12 msec.
In the implicit scheme, from (2.1.5) we have
_Al_t [ citﬂ'.nt _ c‘l] e g&m B‘ t+At
C: + %_1_ Atptﬂst
AL _ ; 4.2. 1
G 1+ A, At “2.1)

Assuming that the source term is known or constant, we can rewrite equation (2.1.4) as .

;t[ t+AL p] g p;;B pt+At+ Ehgum.{_ s

Substituting '™ from (4.2.1), we get

1 t+at  _t P B t+At A 5 AAt ﬂ' t+AL
—_— - -+ t +
alP PI=TR EH-?LAtC E‘HAMAP >

Regrouping the terms of p* and noting that B = Y. B;, we obtain

N
Lt
g = P §1+1At
| At B,
1+A(21+xm 7T

Ct

] (4.2.2)

The power level at the next time step is calculated by (4.2.2) and then substituted into
(4.2.1) to have the precursor concentrations of next time step.
For p <P as in most practical cases, the implicit method gives stable solution with

any At. However, if p = B, as it is the prompt critical case, the power level changes

drastically. Therefore, the time step must be of order — to avoid spurious osciliations of

B

the power level as well as to have an accurate solution.

The initial steady-state conditions for a critical reactor are:
p(0) =0,
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G0 = poi, (423)
s(0)= 0,

and a for subcritical reactor;
p(0) =po <0,
G(0)= po-i—‘, ' (4.2.4)
$(0) = - popo.

It should be noted that the solution of the point kinetics is obtained implicitly in
power and precursor concentrations, but explicitly in dynamic reactivity, If we treated the
reactivity implicitly, it would be very complicated, because the reactivity feedback must be

calculated from the known power level.
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4.3, Dynamic Reactivity
Although the dynamic reactivity is calculated from the power level obtained from

the point kinetics at the current time step, it will only be used in the next time step.

Control Reactivity:

The reactivity inserted by all control elements is calcuiated by (2.1.10). However,
in order to have fast transients, we can introduce any desired reactivity change with time,
This is quite useful'when initial conditions for the critical reactor are considered, as the
initial net reactivity is zero, p(0) = 0, so the net reactivity is:

P() = Pimelt) + Pxxe(t) + Promp(t) + Proia(t) (4.3.1)
where pin(t) is introduced reactivity with time, and
Pine(0) = -[Pxe(0) + Premp(0) + Praia(0)].
Thus, piudt) is given as an input with time to represent any external insertion of

positive or negative reactivity into the system.

Xenon Poisoning:

As the neutron power is calculated from the point kinetics, the xenon feedback for
the next time step is easy to compute . The implicit scheme applied to the I-135 and Xe-
135 build-up equations gives

Ni + v,p'At
I i S |
! 1+ A4t ° “43.2
and
N + [1p' + MNT41At
NE# o 21X Xe 1Y
X 1+ (Mg 40, P)AL - ° (43.3)
where @ = p(t)®.
The equilibrium xenon concentration at full power can be found as
NP =TT (4.3.4)

- lxe + cxg¢FP
Knowing the equilibrium xenon poisoning at full power, p* we can find the xenon

reactivity feedback

At

pi= oy - 435
Xe
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The initial steady-state conditions are:

P (0) = Ppo,

Y1
Ni{(0) = — o,
1(.) ?L]Po

= 'YI * YXe 43 6
NXE(O) z‘Xc "'GJ(epO(DFP o ( o )

Temperature Reactivity:

Temperature reactivity feedback is due to changes in fuel temperature and
coolant/moderator, i.e. water, temperature as in (2.1.13). Thus,
Premp = O (Tg- To) + O, (Tw - To) : 4.3.7)

where the average temperature reactivity coefficients are determined as

T
g=—1—fa df;  forfuel, and
T, =T, T \
iy
a,= } Iaw dTy for coolant/moderator.
T, =T, 1,

The average fuel and water temperatures of the core are:

Neore
E
= = 438
T N ( )

core

Neors
T |
Ty = —-——;" (43.9)

core

where Ty average core node fuel temperature,

T; average core node coolant temperature, and

Neore number of average core nodes.

The reference temperature Ty is usually taken as the initial core temperature at zero power
level. _

For nuclear reactors with natural convection cooling like the DNRR, it is extremely
difficult to determine directly fuel and coolant coefficients, since fuel and coolant
temperatures are not independent parameters. Thus, it is nearly impossible to keep one
parameter constant while changing the other. In practice, at constant reactor power (p =

constant) and inlet core coolant temperature (T, = constant), all thermal-hydraulic
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parameters in the core are relatively stable after extended operations at a constant power
level, and remain stable as long as both p and T, are unchanged. Therefore, temperature

reactivity change can be expressed in term of those two independent parameters as

ap ap

=13 15 4.3.10

4Pty ( 5T )pd’rl ( ap)ﬂ dp (43.10)

or, in more practically integral form, as _
Pramp = Oy, (T1-To) + 0, p 4.3.11)

where the average reactivity coefficients are determined as

& : :
Gy = ! J[‘T?Tﬂ] dT; for inlet coolant temperature, and
o 1 P

P
o,= J’(@]dp | for power.

As Ty and p are very easily measured, the most reliable control parameters of the reactor,
Pump 18 preferably determined by (4.3.10). Thus, at a constant power level, changing inlet
coolant temperature and recording control rod positions, we can find pump = pr at p. =

const, s0

&, = =21, $/°C.

1 0

Changing the reactor power level, measuring inlet coolant temperature and recording

control rod positions, we can find the power coefficient as:

— _ ptwn,p -ETI(Tl "Tu)

P

, $/%FP.

However, O and O, are determined at steady-state conditions, when fuel and coolant

temperatures are ‘well stabilized at a given power p and inlet coolant temperature T;.
During transients they could not be used since both coolant and fuel temperatures are sﬁll
evolving to their stabilized values. |

At steady-state conditions, coolant and fuel temperatures can be expressed through

power and inlet coolant temperature:

T,+T, Tz -T Q.p
w s —— = T + = T +
2 1T ‘T 2cw,” and
Q.p Qp |, Qop
Te=To+ ——=T) + + =
! sh ' 2cw, " Tsh
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where T av.erage core outlet temperature, [°C]
Qo thermal power at p=100% (full power), [W]
W. .core mass flow, [kg/s]
Cp coolant specific heat, [J’kg K]
S core heating surface area, [m*]
h heat transfer coefficient, [W/m2X].
Substituting T, and Ty into (4.3.7), and after regrouping in terms of T, and p, we have

— = O +0, O
Premp = (T + @, )(T1 - To) + ( 2rchc +§EJQop (4.3.12)
Comparing (4.3.12) with (4.3.11), we can have
O+ O, = Oip and (4.3.13)
o, +0, O A
S+ Q= 43.14
( 2¢, W, ShJQ" P (43.14)

Solving (4.3.13) and (4.3.14) for @, and @, we finally have

Sh
o, = (ﬁpp - M—ETI J or more conveniently:

chwc Qop,
T, -T 1
o, = [app—an A > ’) T-T (4.3.15)
and O = Oy - O, or
- T,-T, {_ P
= | l-—" - 43.16
o [l 2(Tf—'rw))°°“ T,-T, (43.16)

The above provides a method. to measure fuel and coolant temperatures for an average
channel and to estimate their average values Ty and T,,. First, the fuel assembly in the cell
that we consider average, i.e. its radial power factor is k; = 1, is removed. Then, an
instrumented fuel assembly with thermocouples is inserted into this cell. The core inlet and
outlet coolant temperatures (T, and T2) are measured by two thermocouples located on
entrance and exit non-fueled parts. The average water temperature T,, is taken as (T, +
" T2)/2, The fuel temperatures are measured by several thermocouples buried in the fuel
cladding along the length of the fuel. To calculate the average fuel temperature Ty, these

measured temperature values are fitted by a curve and then averaged.
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The secondary loop is switched off during the experiment. The water temperature in ‘the
tank is initially low (about ambient temperature). Reactor power is increased in 10%FP
steps from 10% to 100%, with the power held constant for a few minutes after each
change. At each power level, when the core thermal-hydraulic parameters stabilize, the
control rods’ position and the core inlet temperature T, are recorded, and then the power

is moved to the next level. As the heat generated by fission is not discharged, the water
| temperature in the tank is gradually increasing, When the power level reaches 100%, it is
reduced back to 10% and the above process of power increases and taking of
measurements is repeated, but with a higher T,. The experiment is terminated when T, has
reached the operational limit (about 32°C for the DNRR). The experimental data are the
control rods’ position at predetermined power levels with different T; and are used to

calculate @, and O, as described above. Simultaneously with recording control rods’

position, p and T, the core outlet temperature (T;) as well as fuel temperatures are
recorded in order to estimate the core coolant and fuel temperatures (T, and T¢). Then, the
water and fuel temperature coefficients are calculated by (4.3.14) and (4.3.15).

For the DNRR, the temperature coefficients were determined experimentally and are given

in Appendix B.
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4.4. Heat Generation and Heat Transfer
Heat Generation:

The fission heat deposited in the fuel is given by equation (2.2.23). For a fuel
element with known k., we subdivide it into an arbitrary number of axial sections and

rewrite (2.2.23) for each section, assuming the average heat rate over the section with the

section centre at z and length of Az:

Mz D=qwopt)kk (4.4.1)
FP
where (.0 = V. , [W/m3],

ng = number of fuel assemblies, and
Va = volume of fuel contained in one fuel assembly,

k. is ratio of heat generated in the section to total heat generated in fuel:

z+A2l2
[ o(2)dz |
k= it (442)

[ o(2)dz

where Hgis the active fuel height.

In addition to this direct fission heat, there is also the heat generated By decay of
fission products which are assumed to be distributed proportionally to the neutron flux.
Thus, : :

a(z, ) = G [0 p(t) + (D)) ke k2 - (443)

The fission power p(t) is obtained from the point kinetics. The decay power pgl(t),
however, is found by solving the build-up equations of fission products (2.2.25). Here, the
implicit scheme is applied to get: |
@ +ypAt

@ =
' 1+ A AL

(4.4.4)

pal) = SAB)

The initial conditions for fresh core are
®(0)=0

and for equilibrium in fission product inventory at constant power po are

m(0) = o (4.4.5)
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For U-235 fuel, the residual heat due to decay of fission products after the reactor has
been shut down can be calculated by [6}:

p®_| 01 0087 | 01 0087
Po [ {t,+10)"" (t,+2.10")* | [(t, +t,+10)" (¢, +t,+2.10")"

(4.4.6)
where t time after shutdown, s
t, time of operation at power po before shutdown, s.
We will use (4.4.6) to estimate the fission yields and decay constants of the pseudo-ﬁssnon
product groups as follows. At the moment of shutdown after a long time of operation at
power py, with ty—>e0 in (4.4.6), we have

pi(te) = 2% po= pi(0) = pof(t=0, ty—>es)

Y. ¥ = f(t=0, tg—>0) = 0.0608

where f(t, to) is the right hand side in (4.4.6). It means that the decay heat could add up to
6% more to the fission heat. After the shutdown, there is no more production term in the
build-up equations and each pseudo-fission product group will decay by exponential law,
Therefore,

ps(® . E Y@i(t) = Z ¥: poexp(-Ait) = po f(t)

T tie = £t) (4.47)
It is an expansion of the function f(t) in the exponential series, The values of constants y,
and A; are given in Appendix B.

Heat Transfer:

One-dimensional heat conduction in the radial direction of a fuel element is
considered. For general heat conduction in each axial fuel section Az, we discretize the
spatial temperature T by choosing N radial discrete points, so that there must be a point at

any interface surface between fuel and cladding as well as between cladding and fluid.
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] I T R

Xi Xi1 Xi  Xin XN
By denoting T{ = T(x;, t), and A; = (xi1 - X;) as shown, the conduction equation can be

written [9, 10]:
Ci —va o ! thiAt  rp thadt 1 AL o tHAL
— (T -T)=Qit— (Tia "~ -Ti" )+ — (T -Ti 7). (4.4.8
A )= Qi+t (Tia R (Tin ). (4.4.8)
In (4.4.8), C; is the heat capacity, {J/K], of the volume around the point i:

Gim 5 (cpVha * [opVI) 449)

where ¢ specific heat, [J/kg K],
p density, (kg/m’],

v volume, [m®].

Also, Q; is the amount of heat deposited around the point ¢, [W],

Q= 3 (@Vha* VD) (4.4.10)

where q. is obtained from (4.43).
R; is the heat resistance over all the heat transfer area, [K/W]. For solids,

A.
Ri= —= 4411
kisi ( )
where S, average heat transfer area, [m?], between points 7 and i+1

ki heat conductance, fW/m K].

- Generally, ¢, p and k are temperature dependent. Also, ¢ and p are taken at temperature
T;, while k is taken at an average temperature (T; + T;1)/2.

We can use (4.4.8) for the edge points with the boundary conditions of Newton’s law of

cooling by changing the heat resistance of the interface as

1
— e— =O
Ry hs and Ay

where S~ heat transfer surface, [m?],
h heat transfer coefficient, (W/m’K).
To the above system of N points we now add two more points, the fluid temperatures T,

and TN+|.
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- o " a1 : .
Similarly, the symmetric condition q = =) 0 can also be considered, simply set
0

in (4.4.8). .
For the explicit scheme, s = 0, and, for the implicit scheme, s = 1. If the explicit
scheme is applied, (4.4.8) can be rewritten: |

. i A T y At
Tit At _ [1_(_R_+Ri_]€t,]'r: +(il.l_+-Rl_+l-+Q1‘]-c- (4.4.12)
il W i i i

The stability condition for the explicit method is
1 1 1At
1-| == += | =20,
[Ri-l Ri ) Ci
Assuming a constant heat transfer area, material properties and interval length A, this
condition takes the form

1¢p .-
At — —A°
=2%

For U-Al alloy, cp = 2.10° J/m®, k = 158 W/mK [11], even if we only take the minimum
two points of the whole fuel thickness A = 0.7x10° m, then

1
AtS 2.10%0.7x10°)%/158 = 3 msec.

For the implicit scheme, i.e. s = 1, after regrouping in terms of T;"* we can obtain

TH-A; Tt+At At
T + il + it +0. |—
T_t+At = ' ( Ri-l Ri Ql) C

: 4413
AR | i
R, X, )C,

The Gauss-Seidel method can be used to solve (4.4.13). The temperatures of the previous
time step T? are the best values to be guessed for the first iteration [T = [T{]. For
each subsequent iteration, the most recent values of [T**]* are used to recalculate C; and
R; and other [Ti‘+;“‘]“". Instead of verifying the convergence of temperatures, we verify the
convergence of the heat flux from surface to fluid flow q = h(T. - Tw), because the heat
flux is more important and will be used in the hydrodynamic calculations.

The above described method for calculéting heat conduction can be avoided in

some cases by using the lumped method. If we consider the fuel and the cladding as a hot
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object with a constant temperature T immersed in the fluid flow with temperature T,,, then
we can write the heat balance for fuel as:

C i—f = . hS(T-Ty) + Q (4.4.14)

Heat capacity, C, [J/K], and heat genergted, Q, are

C=[cpV]e+ [cpV]:

Q=q\Vr (4.4.15)
with notation f referring to ‘fuel’ and ¢ to ‘cladding’.

Applying the implicit scheme, we find

T* + (hST, +Q)%E

+AL
T =

4.4.16).
& (

1+ hs=

hS C

The lumped method can be used with little error, if the criterion for its use is appropriate,

i.e. when Biot number, Bi, is less than 0.1 [10].

hV
i=— <0.1
Bi 1S

- It is recommended that the lumped method shouid be used when it is appropriate, because

it is extremely simple. As the heat transfer coefficient is calculated by empirical correlation
with a typical error of 20% or more, the calculation of temperature distribution in solids
does not need to be very accurate.
For the DNRR, typical value of h ~ 10° W/mK for subcooled fluid flow, half fuel
thickness is 1.25x10” m, and k = 158 W/m X, then
Bi ~ 10°x1.25x10°/158 = 0.008 << 0.1.
Thus, the lumped method can be applied for most cases until fully-developed nucleate

boiling takes place, when the heat transfer coefficient may reach more than 10* W/m?K
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4.5. Hydrodynamics
For the thermal hydraulic system of the nodes and links as described in Chapter 3,
the flow equation (2.2.11) for a link with index j is: '

dW;, A e
= T [(Bu-Pa) - KWW, - piglssin] @s.1)
L,
£ ]—)—J +k;
where Kj= —————.
o2pAl
In (4.5.1), indexes u and d refer respectively to upstream node and downstream node of
the link. If W;> 0, then the flow is actually from the upstream node to the downstream
node. Otherwise reverse flow takes place.
Omitting index j of the coefficients for simplification, we can transform (4.5.1) in implicit

form into:

A
ij = "I:At[(P:‘At -P;+M) _Kleumleum -ngsinB], and

W= Wi+ AW, (4.5.2)
For the node i, the equations (2.2.7) and (2.2.17) are rewritten for changes in mass and
enthalpy as:
AM; = (”}Edwj- j:V:‘,qu)At, and
M4 = M+ AM; (4.5.3)
AH; = (%dwj b - jéuwjhj'*' Qi) At, and
Hi = H'+ AH; (4.5.4)

The notation ji=u means that i is the upstream node of the link j, and Jj ei=d means that
it is the downstream node of the link j. Link enthalpy h is of the upstream node if flow is
- positive, otherwise, of the downstream node.
The heat term Q; consists of heat flux to the noﬂe fluid volume and heat generated within
the node volume. Thus, for the core nodes

Q=qS+(1-)q.Vr (4.5.5)
where q = h(T. - T) is the heat flux obtained from heat transfer calculations, and the last

term is heat due to neutron thermalization in water.
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The equatioﬂ of state for close nodes, i.e, V; = constant, has a form

= EpAM, +F;AH,

AP R M, +E,M, and
P =P+ AP; (4.5.6)
as well as
AT, = FrAM; + F,;AH, and

T FgM, +F M,
T =T+ AT, 4.5.7)

For the open node exposed to the atmosphere as the upper pool node of the DNRR, we
can calculate the node pressure directly

Pu=B+ 5 PEHe= BT 7P,
where B is barometric pressure, Hy, Aqp and V,, are the node height, cross-section area
and volume. Since pV =M, generally, we have

P, "™ =B + C(M,p + AMy,), and
APy, = C AMy, (4.5.8)

where the constant C depends on where the node centre is chosen. If the node centre is at
- | 1
the middle of the node volume, then C = > g/Asp. Then, we can find the change in volume

AP, M_+F,M;) -F,AM_, -F,;AH
AVup — up(F4P g 5P fF) 1P up 2P up ( 4 59)
k2

and, consequently, temperature
_E;aM, + BraH + B AV,
FaM, +F; M,

ATy , and

T =T+ ATy \] (4.5.10)

1t is easy to derive the equations for steady-state conditions. Thus, in the above

~equations, setting all changes of flow, mass, enthalpy and pressure to zero, we have:

Mass: TW =YW, (4.5.11)

jei=d jei=u
or W =W, = W, for nodes with one inflow and one outflow;

Enthalpy: I Wh+Q= X Wh, (4.5.12)

jeind jeimu
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or how = by + %‘- for nodes with one inflow and one outflow;

Flow: P, - P4 - pgLsing = KWW (4.5.13)

Equation (4.5.13) is the balance of buoyancy to friction pressure drop across any link
between two nodés at steady-state conditions. For close circuits like the DNRR without
pump flows in and out, if we write (4.5.13) for every node and sum their left hand sides

and right hand sides, we have:

> gpiLisind = Y K, [WIW . (45.14)
] ]

Equation (4.5.14) is a traditional equation used for flow calculations under steady-state

conditions,

If the flow is known, equations (4.5.3) - (4.5.10) are quite easy to solve. However,
equation (4.5.2) causes some difficulties as it contains both pressure and flow of the next
time step as unknowns. The friction term could be replaced with

KW W = K| WH( W + 2AW).
For a node with one link in and one link out, (4.5.6) can be transformed further using mass
and enthalpy equations (4.5.3) and (4.5.4) as
AP; = C;;AM; + CzAH;
= Ci(Wj.1 - WAt + Co(Withyy - Wi by + Q)At
= %ij1 WAt + % WAL + CoiQiAt,

FIP
FoM, +F .M, ’

with Cl =

I\ N

Cz =
F4PM3 +Fp M,

and

Kij= Cyt C;uhj.
So, the pressure difference in (4.5.2) can be replaced with
putﬂ.“ _ Pdt+At = Put - Pdt + APu i APd
= (P’ - Pd) + [tujet W = Qg+ X)W ™ + A Wi + CouQu C2aQu)AL.

- After collecting terms in (4.5.2) and solving for flow change, we have
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A ’ .
W+ 2 LB+ KWW, + bt + (Wi + X Wit )]

Wi A A

1+2K|w;1£-m + (X +;¢dj)-—L—At2

| _ 4.5.15)°

with b = - pgLsin® and cq = (CQu- C24Qq)At. Gauss-Seidel method can be used to solve
(4.5.15) for flows of all links.

Note that the calculation accuracy is also dependent on the size of the time step At. With
large At, the pressure change may be rather large, so that the node pressure may not
remain under the lower bound of the pressure fit curve. Therefore, At should be carefully
chosen not to be either too large or too small. With some optimized value of At, which can
be determined from running the code, we can neglect the flow changes of Wj. and Wi, in

calculating W' by (4.5.15). This is very useful as the iteration is no longer needed to
}

solve (4.5.15). In this case, we have

N |
T At[(P: “PY) = KIW W, +b+cq = (% + L) Wi At + (X Wi + X Wi )At]

aW;= S i A
14+ 2KIW; AL+ (1 + ) T

(4.5.16)
All terms in the left hand side of (4.5.16) are know from the previous time step.
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4.6. Safety Limits
Maximum Wall Temperature:
To avoid excessive corrosion of the aluminium cladding of the fuel for long

operations, the maximum wall temperature is recommended as

T™ = 105°C.

Onset of Nucleate Boiling:

Bergles-Rhosenow ‘correlation (2.2.32) is used to predict the ONB. The ONB
could take place if the wall overheating were:

1 .
AT, = (E?‘:,m-) /020 PO (4.6.1)

where q the local heat flux, [Btu/ft*-hr] = 3.155q[W/m’]

P pressure, [psia] = 145.04P[MPa]

AT, wall overheating, [°F].
The wall temperature at the predicted ONB would be:

5
TcONB = Tnt + EATIN. » [OC]’ . (4'6'2)

where T,y is fluid saturation temperature at the local pressure, [°C].
The ONB heat flux, on the other hand, is determined by Newton’s law of cooling with the
convective heat transfer coefficient h as
qoxe = h(Tsons - Ty), [W/m?] (4.6.3)
The margin to ONB is, therefore,

197
Margin to ONB =—-22—=- (4.6.4)
. . Tc - Tb

Critical Heat Flux and Departure from Nucleate Boiling:
The critical heat flux (CHF) is estimated by the Mishak correlation (2.2.34) and the
margin to the departure from nucleate boiling (DNB) is calculated as:

Margin to DNB = E—‘;&
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