Chapter 2
BACKGROUND

2.1, Point Kinetics
The point kinetics equations can be derived from the general diffusion equation: [4]

%a—;i= [M - k1 FI®, 2.1.1)

where M | neutron elimination operator (absorption, scattering and leakage),
F production operator (fission and delayed neutrons),
kg  effective multiplication factor,
(i) neutron flux, and
v neutron scalar speed,
by introducing the following flux factorization;
&(r, E, t) = p(t)'¥(r, E), (21.2)
where p(t) time-dependent amplitude,
r spatial coordinate,
E neutron energy, _
the fixed flux shape, usually corresponding to the initial steady-state
conditions.
The amplitude p(t) is arbitrarily normalized to unity at a chosen power level, which is, for
convenience, the full power (FP) in this thesis: |
pre=1 or 100% . (2.1.3)

Thus, the point kinetics equations can be written as follows:

%t)- = E'—(—t-i;l?-p(t) + gl;G(t) + s(t) | (2-1-4)
&= o+ B 215

where p(t) is defined as in (2.1.2, 2.1.3), and can represent the neutron power in
percentage of reactor full power, %FP,
Gi(t) weighted precursor concentration in delayed neutron group i,
i=12,..,N
A decay constant of precursor of delayed neutron group ,

effective delayed neutron fraction,
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' N
B; fraction of delayed neutrons in group i, 3, Bi =B,

i=l

L
A mean life time of prompt neutrons ¢ divided by ke, A = P
. off

s(t)  weighted external source,

p(t)  dynamic reactivity.
The initial steady-state conditions can be obtained by equating the right hand sides of
(2.1.4) and (2.1.5) to zero. Thus, the initial weighted precursor concentration of each

delayed neutron group is:

Gi(0) = po %— (2.1.6)
The initial source strength and reactivity, however, are either
for critical reactor;  s(0)=0 and p(0)=0, or (2.1.7)
for subcritical reactor: p(0) = pe<0 and s(0) = 8o = - popo. (2.1.8)

The dynamic reactivity in (2.1.4) is considered as a function of a number of global
parameters:

P(t) = Pex + Paat(t) + Pxelt) + Pramp(t) + Proia(t), (219
where p. is the fuel loadexcess reactivity assumed to be unchanged for a short time of

operation. The other time-dependent items are as follows:

Contml Reactivity:

The control reactivity, pos, is the negative reactivity of all control elements inserted
into the reactor core to compensate the excess reactivity of the fuel, and to control the
reactor. For the rod form of control elements, the control reactivity at any given time is
the total reactivity of all control rods. Integral reactivity, p(z), versus position of each

control rod is usually determined from the regular rod calibrations. Thus,

Paa(t) = Z pifz) (2.1.10)
where z; position of the i-th control rod,

pi(z) integral reactivity of the i-th control rod vs. its position, and

N total number of control rods.
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Xenon Poison:

1t is known that several fission products are strong neutron absorbers, among
which Xe-135 is the most significant, especially, for relatively long time operations. The
xenon feedback, px.(t), can be calculated from solving the buildup equations of I-135 and
Xe-135:

% =%p - MNy @11
dNXe
dt = ('YX:P + 2"INI) & (A'Xe + 0Xe¢)NXe (2. 1 .12)

where Njand Nx,  weighted numbers of nuclides I-135 and Xe-135,
v and Y¥x. fission yields,

Arand Ax, decay constants,

Oxe microscopic absorption cross-section of Xe-135,
o average thermal neutron flux.
Temperature Effects:

Increase of temperature in the reactor core has three effects that cause changes in
reactivity. There are the density effect due to thermal expansion, the Doppler broadening
effect due to widening of the resonance in U-238, and the neutron spectrum effect due to
increase of molecular speed. Each of them affects the neutron cycle more or less, and will
immediately introduce a positive or negative reactivity - the fast reactivity feedback.

The temperature_feedback, pump(t), 1s a function of fuel and coolant/moderator
temperatures with reference to an arbitrary temperature T, which can be, for convenience,
the initial core temperature at critical zero power level:

=]‘ 3 't e
prma® = J| 5| 9T ¥ | S 2.1.13)
T, T

To

where Ty  average fuel temperature, and
Tw average coolant/moderator temperature in the core.

It is customary to define the fuel temperature coefficient, oy, as:

_ |90
o = [aTer.m (2.1.14)

and the coolant/moderator temperature coefficient, o, as
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- (op
O = (aTwL.m (2.1.15)

<

The void feedback, pvoia(t), is due to void formation occurring if any boiling takes
place in the core. In this work, only subcooled liquid is considered and no boiling is
allowed, therefore, the void feedback is ignored. However, for accident analysis, the void
feedback must be taken into account because the negative reactivity introduced by void
formation from subcooled nucleate boiling, although very small in volume, can have quite

significant reactivity effects.



2. Background : 10

2.2. Thermal-Hydraulics
2.2.1. Conservation Equations [5]

The general conservation equation for any field variable is written as
2 f[[wav = [f[rav + ffrdds @2.1)
Dt v v 5

D . - : -
where r time substantial derivative = change due to time variations plus change due

to movement at the velocity of the field variable, v,

I volume integral over the arbitrary volume V,

II surface integral over the surface S of the volume V,

1 a continuous field variable such as mass, momentum, energy, etc.,' |

r net sum of Jocal sources and local sinks of the field variable W within the
volume V,

1 net sum of local sources and local sinks of the field variable y on the
surface S,

n unit vector normal to the surface.

Using Reynold’s Transport Theorem:
> [[[vav - jﬂ%—“:-dv + JJwaias (222)

where. % local time derivative, and

-

® velocity of the field variable,

we can transform (2.2.1) into:
I} %‘i—’dw - [[wadds+ [[[rav + [[rads (223)
¥ S v 3

In Words, this states that the change in the conserved field variable y in the volume V is
due to surface flux, plus sources and minus sinks.

Using Gauss’ Divergence Theorem:

[[Aras = [[[v.Adv (22.4)
3 v
where A any vector, such as velocity or heat flux, and
v Del operator, (eg. V = i-f + i] + 9 E),

ox 9y oz
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we can rewrite (2.2.3) as:
%"---wawn 1 (2.2.9)

This is the distributed or microscopic form. Equation (2 2.3) is the macroscopic or
“lumped” fo:m They are equivalent and one can move freely back and forth between the

two forms as long as the field variables are continuous.

Conservation of Mass:
Interpreting W = p = the fluid density, I'=0, and IT = O (there is no volume

generation and no surface flux), we have

distributed form: %% =-Vpo (2.2.6)
lumped form: %I\ti = 3 W; 2.2.7)
j
where M mass in the volume V: M= H_[ pdV
v

W . mass flow into or out of the volume V: 3, W;=- H p®.0dS = X piiA;.
i s i

Conservation of Momentum:
Substituting Y = p® = the momentum per unit volume,
r= p? = the momentum generated by volumetric forces, and
IT1 = [c] = the surface stress tensor,

into (2.2.5), we have:

distributed form: %2? +Vpo o =V.[o]+ pf (2.2.8)

where T is the long range or body force (i.e. gravity). The stress tensor, [0], can be split

into the normal and shear components:

fo}=-PI ]+ [1]
where P is the pressure, [I] is the unity tensor and [t] is the shear tensor. Then, (2.2.8)

becomes:

P2 +Vpd®d =-VP[]+V.[1]+pf (2.2.9)
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V.[7] is usually evaluated by an empirical correlation,
Assuming one dimensional flow, such as in a pipe with the length L and flow inlet
and outlet areas Ay, and Aoy, the lumped form can be written as:

opid £+k) |®| @

V—— = AgPin- AgutPout- XLB [fD —— -LApgsin, (22.10)

ot 2

where g acceleration due to gravity,

0 angle with relation to the horizontal.

V.[1] is replaced with the term containing the friction coefficient f and resistance k. If the

body force is only gravity, pf is replaced by an elevation change term. If a pump is
present, an extra term must be added to consider an external force acting through pump
head, AP pump.

If A;, = Ao = A and interpreting the mass flow as W = p@A and volume V=AL, (2.2.10)
becomes:

';Z':f - peLsing] 2.2.11)

L
5= ¢ LEu P65 B

which is the form typically used in this work.

Conservation of Energy:
Substituting
v = p(e + @.5/2) = the sum of intemnal and kinetic energies per unit
volume,
= p?. @ +E_=the work done by body forces and heat generafed per
unit volume, '
I1 = § + [6].& = the heat conduction across the surface and the work

done by stress forces,

into (2.2.3), we have the integral form:
il aatﬁdw- [ped.fias =-[[q.ads +[[[Eav + [[[x}vadv-[[[Pv.adv (2212)
v ] . 8 Y A\ v

“where ¢ internal energy,

g surface heat flux, and

E internal heat sources and sinks,
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This equation can be used to generate the heat conduction equation for solids. By setting

fluid velocity to zero and converting surface integrals to volume integrals we get the

distributed form:
o) _ v g5 +E 2.2.13)
ot
. e I . de aT
Using Fourier law for heat conduction: q = - kVT and replacing 3 v 3y we have
the classical form of the heat conduction equation:
pc,,%—f— =-VKVT+E (2.2.14)
where k heat conductance,
Cy specific heat at constant volume.

If we use enthalpy rather than internal energy, defining enthalpy
P
h=e+ = ‘ead  H=pVh
we can transform (2.2.12) into:

%tl-{- = EWh+ Q+ jg[ﬂV('ﬁdV-Iﬂ[?a% + (T).VP}W (2.2.15)
where Q =- H q.ndS + _[U EdV is the heat flux term plus generation term. The integral
5 v

term involving pressure is often neglected since it is usually negligible compared to other
terms. The turbulent heating term is usually approximated by adding a friction heat into Q
or can be neglected.

Neglecting turbulent heating and pressure terms, we have
oH |
e X Winhin - ZWouhion+ Q (2:2.16)

where the indexes in and out correspond to inflow and outflow of mass and enthalpy into

and out of the volume V.
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2.2.2. Equation of State [5]

From the conservation equations, we have three equations (mass, momentum and
energy) and four unknowns:

1) density p, or mass M =pV,

2) velocity @, or mass flow W, or momentum p®

3) energy e, or enthalpy h, or temperature T = fn(e) or fn(h), and

4) pressure P.

The fourth equation required for closure is the equation of state:

P=fnth,p) or p=fn(P, T), etc,
From thermodynamics, the equation of state of a substance is the relationship between any
four thermodynamic properties of the substance, three of which are independent. For
example, the equation of state involves pressure P, volume V, temperature T and inass of
the system M:

P, V,T, M)=0
If any three of the four properties are fixed, the fourth is determined. The equation of state
can also be written in a form of specific values of the properties:

nP,v, T)=0
where v = V/M, the specific volume. If any two of the specific properties are fixed, the
third is determined.

The practical way to present fluid properties is to tabulate or to formulate each
property as function of the independent parameters P and T. Given values of P and T, the
calculation of other thermodynamic properties is straightforward:

h=h{®,T), »p 5 p(P, T), etc.
However, determinations of P or T from other known properties are not direct since
interpolation and iteration are required. Thus, since the numerical solution of the
© conservation equatidns yields mass (p) and energy (h) as a function of time, it is the mass
and energy which are independent parameters;

P=P(p,h) and T=T(p,h)

The mm_m for determination of P and T from known p and h starts by
guessing a pressure, Given P = P, we calculate enthalpies of saturation liquid and vapour
phases h(P) and hy(P). If h < hy, the fluid is single phase liquid. If h > hy, the fluid is single
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phase vapour. For the single phase fluid, temperature is also guessed T=T.;. Then density
and enthalpy can be found:
h=h{PT) and p =p®T).
The next iteration pressure and temperature are
Ap Ah Ap Ah

CHOREONC

ap), \op), T/, \aT),

where Ap=p° -pand Ah=h"-h.

For two-phase mixture hr € h < h,, temperature is saturation temperature T(P), and

P=Pul+

density is
: . __h-h
P = Pr+ Xpy, with a quality x = ~
hg ’ hf
The next iteration pressure can be
_ _4Ap AR
P =P [Bp) / whelreAp—p -p._
P/,

The iteration process is repeated until P and T have converged to some tolerance.
The rate method will eliminate the need for iteration with no loss in accuracy. We
wish to relate rates of change in preséure to rates of change in p and h:
dP=Gidp+Gxdh or.

— P — + i
" G it G, 0 (2.2.17)
d dh dM d '
since d—? and @ (or equivalently, ot and d_t) are available from mass and energy

conservation equations. That is:

~ dh oh
h=h®,T) =  dh= (BPJ dP+(aT) dT

3 2
p=p®,T) = dp=(a§) dP+(af;J dT

&, (&)
_\at), aT
4P = o eNowy - Denon and
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(EB] (911)
4T = DENOM) dh - SEnon P (2.2.18)

where (DENOM)= (28] (2] - &)l (2.

G, and G, in (2.2.17) are functions that depend only on the local saturation fluid properties

and their slopes at the local pressure. Their values are given in Table 2.1.
Equation (2.2.18) can be cast in term of the extensive form by noting p = V/M and h =
H/M. Thus, substituting:

dp _1.dM M dV - d do 1 dd H dM

# Ve Va0 @ Mda M dt
into (2.2.18), after some simplification and rearrangement we have:

dM dH dv
211 _ F]P'"'dT'*'FwE{_"'FwE

= 2.2.19
dt E M, + FoM, ( )
Similarty,
M dH dv
+F;——+F—
_dl Fl dt Tt Tt (2.2.20)

dt FoM, + E;M,

where M;  'mass of vapour phase, M, = xM

M:  mass of liquid phase, M= (1-x)M.
The values of functions F;p and F;pare given in Table 2.2,

The rate method has some advantages compared with the iterative method. First,
the equation set (mass, flow, enthalpy and pressure) consists of four equations,
characterizing the four main actors: M, W, H and P. Second, it permits the numerical
calculation of pressure without iteration. Since the pressure can be explicitly expressed in

terms of slowly varying parameters, an implicit scheme can be formulated and coded.



Table 2.1. G functions for the rate form of equation of state

Case G
Two phase mixture h v’
(all derivatives along oh, dh, dv, Ovg
saturation line) | ($+ Xa—P)_ “(5 +x¥)
ch
Single phase d dh (ﬁl dh
for pressure (P) (%)T (ﬁ)p - (ﬁ)l’ (a_P)T
| ah
Single phase H(a—P)T
0| EEEE
ap) \a1), "\at), 3 ),

puno8yong 'z

Ll



Table 2.2. F functions for the rate form of equation of state

18

Case F, F, F; | Fs
Two phase mixture
all derivatives alon Ve - \7 - dh ov
( saturation line) : e ) / V"% 'h"% Vagp "D gp
subcooled: 0 - subcooled:
ey |GG, | |Gy o (&), G7),- (%))
for pressure (P) aT/, \dT/, dT /, aT /, (a_h) (a_p) _(EP_) (_a_p_) dP /. \9T/, \dP /. \dP /.
dP /. \dT /., \ 3P/ \dP/ superheated: 0
oy | ") 8, | (), [#(5)
for temperature (T) dP /). \dP/; oP J; oP -Fap Fs

punosyondg ‘¢

81
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2.2.3, Heat Generation and Heat Transfer in Nuclear Reactors [6]

" In nuclear reactors, fission is the origin of thermal energy generation. The thermal
energy released by fission in the fuel elements is transferred by heat conduction to the
surface of the fuel elements and then by convection to the coolant which circulates around
the fuel.

Heat Generation:

Approximately 200 MeV of energy emitted during a fission event is converted to
heat, most of which (= 94%) takes place within the fuel due to fission fragments and very
short-range (-rays. The energy released during neutron thermalization takes place in the
moderator (= 5%). In thermal reactors fission is mostly induced by thermal neutrons. The
volumetric heat generation in the reactor fuel is given by:

gu(r, t) = o ERZD(r, t) (2.2.21)
where o the portion of thermal energy deposited in the fuel,

Er  the recovered fission energy which is = 200 MeV/fission,

2% fission macroscopic cross-section of fuel for thermal neutrons,

D thermal neutron flux,

Usually, the fission power rather than the neutron flux is used in this thesis. Using the
definitions as in (2.1.2) and (2.1.3) for thermal neutrons, we can rewrite (2.2,21) as:

aur, )= Gho 0 p(8) () @222) |
where o is the average power density at normalized reactor power (p = 1). That is the
thermal energy released per unit volume of the fuel.
Equation (2.2.22) shows that to determine the distribution of heat generation rate in the
reactor core, we need to know the shape of the neutron flux throughout the regions of the
core which contains fuel. The accurate determination of neutron flux or power density
distribution throughdut the core is a complicated process and is beyond the scope of this
work. For heterogeneous cylindrical reactors, the axial flux shape is usually given by a
function of axial flux shape, ¢(z), while the radial flux is discretized by the fuel channel
factor, k,, which is the ratio of the power generated in the channel to the power generated
in an average channel. Thus:

aor, t) = qvo @ p(t) k: 9(z) (2.2.23)

k: and ¢(z) are determined by neutron flux measurements in the reactor core.
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In addition to the fission heat, there is another heat source which must be taken
into account. That is the heat released by the decay of fission products within the fuel. For
research reactors, reactor power is assumed to be the neutron power and not the thermal
power, therefore, the more accurate form of (2.2.23) must be

ar, ) = qvo [ep(t) + pe(t)] ke 9(2) (2.2.24)
where pg(t) is fission product decay heat contribution to the thermal power. The amount
of decay heat depends on the inventory of fission producis at time t. The build-up of
fission products can be approximated by

P = 3 A1)

=1

B = ()< K0) | (2225)

where ; wéighted inventory of i-th group of fission products,

Yi fission yield,

A decay constant,
N number of pseudo-fission product groups to model the decay heat source.
Heat Transfer:

The heat getierated within fuel is first transferred by heat conduction to the fuel
surche, across the cladding, and then by convection to the coolant flow. For heat
convection, Newton law of cooling is used:

g =h(T.-T}) (2.2.26)
where g, local heat flux at interface between surface and fluid flow,

T. surface temperature, |

Ty éverage fluid bulk temperature,

h the heat transfer coefficient.

The convective heat transfer coefficient is greaﬂy dependent on the flow regime and fluid
properties, Usually, the heat transfer coefficient, h, is calculated through a dimensionless
parameter, Nusselt number: |

‘ .
h= Nu-ﬁ (2.2.27)
(flow area)

(wetted perimeter) ’

where D hydraulic diameter = 4
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L - -
"ﬂ‘]ﬂ*ln’ﬂlln‘l'nﬂﬂ'mﬂ [L

k fluid thermai conductance taken at Ty,
Nu  Nusselt number.
The empirical correlation is actually for Nusselt number as function of other parameters

such as Reynold humber, fluid properties, geometry, etc.: Nu = fn(Re, Pr,...).
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2.2.4. Empirical Correlations
Friction Coefficient:
Darcy formula for friction pressure drop in ducts is:
AP, = (f% +K) 2:’:’—;-, (2.2.28)
where £ ts the friction coefficient, caiculated by an empirical correlation f = fn(Re), and k is
the fitting loss coefficient, usually tabulated for s_udd'en changes of flow area or flow
direction.

For flow in smooth channel, the friction coefficient f can be expressed as [12]:

f = 4[a_+ RZ#), : (2229)
where «, b and m depend on a dimensionless parameter, Reynold number:
Re= -‘}3,
where Ll is the dynamic viscosity of fluid.
Re <2100 : a=0 b=16 and m=1.
2100 < Re < 4000 a=0.0054 b=23x10® and m=-23 4
~ Re > 4000 a=1.28x10° b=0.1143 and m=232154

To account for the temperature dependence of fluid properties, the friction coefficient f of
(2.2.27) should be multiplied by a factor

(k)

where L1y and M. are fluid viscosity taken at bulk and wall temperatures respectively.
According to Deissler, m=-0.58 for heating and m=-0.5 for cooling. Also, to account for
the configuration of the flow channel, the friction coefficient should be multiplied by

another factor varying from k. = 1 for circular tube to k. = 1.5 for infinite parailet plate |

channel.
For some simple cases, the fitting coefficient k can be estimated as follows:[2]
- A,
sudden expansion in flow area; k=2 A 1{, Ay > Ay
’ 1

2
) A
sudden contraction in flow area: k=14 [1 - (Kl] }, A > A
1
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0.6 for 90° bend.

change in flow direction: k

Heat Transfer Coefficient:

The heat transfer coefficient is actually a complicated function of the flow
conditions, thermodynamic properties of the fluid, geometry and dimension of the surface.
Specific correlations exist for the full range from single phase laminar flow to two phase
turbulent flow. For laminar flow in circular tube, the analytical values of Nu are found to
be Nu = 4.36 with constant heat flux and Nu = 3.96 with constant wall temperature.

For laminar flow, Re <2300, Sieder-Tate correlation can be used

. D % 014 : .
Nu=1.86 (RePrI-) [b-) N (2.2.30)

k
where Pr =c_ is Prandtl number. s and ., are taken at mean fluid temperature and at
r

- wall surface temperature respectively. This correlation is valid if

4 0.14
(Re Pr %)3 (%’—) >2  (Whitaker condition).

For transition and turbulent flow, 2300 < Re < 5.10°, Gnielinski correlation is the
best choice:

_ (E/2)Re - 1000) Pr
1+ 127 7 2(Pr*2-1)

where f = (1.58InRe - 3.28). To account the temperature-dependent viscosity, a factor of

(2.2.31)

.14
[&LJ is multiplied as recommended by Deissler. Also, to account the configuration of
flow channel, Nusselt number is multiplied by a channel factor k,. For example, k. = 0.785
for square channel, k. = 1 for circular tube, up to k.= 1.89 for infinite parallel plate

channel [13].

Onset of Nucleate Boiling:

In research reactors using plate-type fuel elements, the bubble formation in heated
channels can lead to critical phenomena. The onset of nucleate boiling (ONBY) is then
considered as the first warning, and the heat flux that initiates ONB is frequently used as a
thermal design constraint. Actually, the ONB is taken as a safety limit in steady state
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conditions although it does not correspond to any critical event. For the first bubbles
attached to the wall appearing, it must be under the conditions that the wall temperature
must exceed the coolant saturation temperature T,y in & AT, = T, - Ty This is normaily
referred to as ‘wall overheating’. |

The ONB heat flux can be estimated by Bergles-Rhosenow correlation;

gowe = 15.6 P''* (AT,,)", n=23pP°0 (2.2.32)
where qoxg:  ONB heat flux, [Btu/ft*-hr],
P pressure, [psia),

AT“t wall overheating, [OF]' AT..;'_ TcONB Tut
The margin to ONB i is defined as the ratio of the ONB heat flux to the local heat flux at

the same point:

Qone

Margin to ONB = d

(2.2.33)

Critical Heat Flux:

During an accidental situation, the phenomenon known as departure from nucleate
 boiling (DNB), can appear. As a consequence of very high heat fluxes, large production of
bubbles close to the surface takes place, an insulating vapour layer is formed which
prevents the normal heat exchange between the wall and the coolant, The wall temperature
increases drastically due to this phenomenon and may lead to the melting or deformation
of the wall. _

To calculate the margin to the DNB, the critical heat flux (CHF) is estimated. The
CHF is the upper bound for design purposes and can be given by Mishak’s correlation:

qerr = 1.51x10° (1 + 0.1198@)(1, +0.00914ATw)(1 + 0. 19p) (2.2.34)
where qop  crtical heat ﬂux [W/m?]

) flow velocity, [m/s]

P pressure, fbar]

ATuwp = Taat - Ts, [°C].

The margin to DNB is defined as the ratio of the CHF to the local heat flux at the same
point;

qcur

Margin to DNB = q

(2.3.35)
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