แบบจำลองไฮโดรไดนามิกเพื่อศึกษาการเคลื่อนที่ของน้ำมันที่รั่วไหลในอ่าวไทย

นาย อนุกูล บูรณประที่ปรัตน์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิทยาศาสตร์ทางทะเอ ภาควิชาวิทยาศาสตร์ทางทะเอ

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2540 ISBN 974-638-391-4 ถิขสิทธิ์ของบัณฑิตวิทยาฉัย จุฬาฉงกรณ์มหาวิทยาฉัย

HYDRODYNAMIC MODEL FOR INVESTIGATION OF OIL SPILL IN THE GULF OF THAILAND

Mr. Anukul Buranapratheprat

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science
Department of Marine Science in Marine Science
Graduate School
Chulalongkorn University
Academic Year 1997
ISBN 974-638-391-4

Thesis Title

Hydrodynamic Model for Investigation of Oil Spill

in the Gulf of Thailand

By

Mr. Anukul Buranapratheprat

Department

Marine Science

Thesis Advisor

Mr. Supichai Tangchaitrong, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

(Professor Suphawat Chutivongse, M.D.)

Dean of Graduate School

(110103501 Suphawat Chattvongse, 111,D.

THESIS COMMITTEE

(Assistant Professor Suraphol Sudara, Ph.D.)

(Mr. Supichai Tangchattrong, Ph.D.)

Thesis Advisor

Absormuda d'inje Member

(Associate Professor Absornsuda Siripong)

อนุกูล บูรณประทีปรัตน์: แบบจำลองไฮโดรไดนามิกเพื่อศึกษาการเคลื่อนที่ของน้ำมันที่รั่วไหล ในอ่าวไทย (HYDRODYNAMIC MODEL FOR INVESTIGATION OF OIL SPILL IN THE GULF OF THAILAND) อ. ที่ปรึกษา: ดุร. ศุภิชัย ตั้งใจตรง, 123 หน้า. ISBN 974-638-391-4

ได้ทำการปรับปรุงแบบจำลองทางคณิตศาสตร์แบบ 2 มิติที่ใช้เทคนิค เอดีโอ ไฟในท์ดิฟเฟอเรนท์ เพื่อให้สามารถคำนวณลักษณะของกระแสน้ำในอ่าวไทย โดยใช้ข้อมูลนำเข้าที่สำคัญคือ กระแสลมเฉลี่ยจากปี พ.ศ. 2523 ถึงปี พ.ศ. 2531, ระดับน้ำขึ้นน้ำลงจากการคำนวณโดยวิชีอาร์โมนิก และค่าระดับความลึกเฉลี่ยของ น้ำทะเลที่ได้จากแผนที่เดินเรือของกองทัพเรือ ค่าของกระแสน้ำที่คำนวณได้นี้ถูกนำมาตรวจสอบความถูกต้อง โดยทำการเปรียบเทียบกับข้อมูลกระแสน้ำที่ได้จากทุ่นสำรวจสมุทรศาสตร์ในอ่าวไทย พบว่าค่ากระแสน้ำที่ได้ จากการคำนวณให้ผลใกล้เคียงกันกับค่ากระแสน้ำที่วัดได้จริงที่สถานีระยอง, เกาะสีจัง, เพชรบุรี และหัวหิน และให้ผลไม่ดีที่สถานีเกาะช้าง, เกาะเต่า, และนครศรีชรรมราช

ต่อจากนั้นได้มีการทคสอบแบบจำลองทำนายเส้นทางการเคลื่อนที่ของคราบน้ำมันคิบที่รั่วไหลใน ทะเล โดยใช้ข้อมูลกระแสน้ำที่ได้จากแบบจำลองคำนวณกระแสน้ำเป็นข้อมูลนำเข้า การทดสอบนี้ทำขึ้นเมื่อวัน ที่ 30 มีนาคม 2538 ที่บริเวณใกล้กับเกาะสีชัง จ.ชลบุรี โดยการปล่อยแผ่นไปรษณียบัตรเคลือบพลาสติกลงไปที่ ผิวน้ำทะเลแทนคราบน้ำมันที่รั่วไหลในบริเวณนั้น ผลการทดสอบพบว่าหากมีการเพิ่มข้อมูลกระแสน้ำที่เกิด จากน้ำขึ้นน้ำลงที่คำนวณได้เข้าไปในการคำนวณของแบบจำลองทำนายการเคลื่อนที่ของคราบน้ำมันในอ่าว-ไทยแล้ว จะทำให้ได้ผลการทำนายดีกว่าการไม่รวมข้อมูลกระแสน้ำขึ้นน้ำลงเข้าไปในการคำนวณ

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา	วิทยาศาสตร์ทางทะเถ
	วิทยาศาสตร์ทางทะเถ
ปีการศึกษา	2540

C726024 : MAJOR MARINE SCIENCE

KEY WORD: OIL SPILL / HYDRODYNAMIC MODEL / GULF OF THAILAND

ANUKUL BURANAPRATHEPRAT: HYDRODYNAMIC MODEL FOR INVESTIGATION OF

OIL SPILL IN THE GULF OF THAILAND.

THESIS ADVISOR: SUPICHAI TANGCHAITRONG, Ph.D. 123 pp. ISBN 974-638-391-4.

A two-dimensional hydrodynamic model employing ADI finite difference technique is applied to compute current in the Gulf of Thailand. The 8-years averaged wind data from 1980 to 1988, tidal elevation at the open boundary computed by harmonic analysis, and averaged depth from navigation chart of the Royal Thai NAVI are used as input in computation. The results, monthly mean of current vector fields are presented in this study. Comparison between measured current from oceanographic buoys deployed in the Gulf of Thailand, and computed current from hydrodynamic model is good at Rayong, Ko Sichang, Petchaburi, and Hua Hin, while poor comparisons occur at Ko Chang, Ko Tao, and Nakorn Srithammarat.

In this study, the oil spill trajectory model is tested by employing computed current of hydrodynamic model as input. Field experiment for testing started on March 30, 1995 near Ko Sichang. Drift cards as oil slick leaked in the sea are released and tracked down, and then the measured and computed positions of drift cards are compared. The results show that, if the tidal current computed by hydrodynamic model is included in computation, more accuracy in trajectory prediction of spilled oil in the Gulf of Thailand will occur.

ภาควิชา	วิทยาศาสตร์ทางทะเถ
สาขาวิชา	วิทยาศาสตร์ทางทะเถ
4 004000	2540

ลายมือชื่อมิสิต A. โพงงางสุดสโนยาสร้. ลายมือชื่ออาจารย์ที่ปรึกษา ราวะไม่ ไม่ การ

ACKNOWLEDGMENTS

This thesis is for Dr. Mahunnop Bunpapong,
my great teacher who inspires me in physical oceanography.
It is impossible if there are no help from him.
One thing that I need to tell him if he can hear me is
"You can be sure that I'll try the best in our dream".

TABLE OF CONTENTS

		Pag
Thai A	Abstract	iv
Englis	h Abstract	v
Ackno	wledgement	vi
List of	Tables	viii
List of	`Figures	ix
		•
Chapte	ers	
I.	Introduction	1
II.	Theoretical and Numerical Model	8
	1. Governing equations	8
	2. Grid system	10
	3. Numerical integration schemes	10
	4. Surface and bottom stresses	16
III.	Simulation of Circulation Patterns	18
	1. Initial and boundary conditions, and computational input	18
	2. Hydrodynamic model verification	32
	3. The circulation patterns	89
IV.	Application of Hydrodynamic Model for Investigation of Oil Spi	11
	in the Sea	103
	1. Theoretical of the oil spill trajectory model	103
	2. The operation and testing of the oil spill trajectory model	106
V.	Discussion and Conclusion	
Referen	nces	121
Biograp	ohy	123

LIST OF TABLES

Table	•	Page
1	Tidal constitutes at Campong Som and Kuala Trengganu	
	(Choi et al., 1996)	19
2	The geographical positions of oceanographic buoys in	
	the Gulf of Thailand	33
3	The list of buoys data in each month that can be used for	
	hydrodynamic model verification in 1997	35
4	Results from field experiment of oil slick movement on the	
	sea surface and measured wind at Ko Sichang on March 30, 1995	108

พาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

igure	e	Page
1	Computational grid showing location where U, V, and ψ	
	are evaluated	12
2	Grid system for the Gulf of Thailand. The grid increment	
	are 6 minutes in latitude and longitude	13
3 -	Computer plotted of the digitized water depth (in meters)	
	in the Gulf of Thailand	14
4	Monthly mean wind filed in January	20
5	Monthly mean wind filed in February	21
6	Monthly mean wind filed in March	22
7	Monthly mean wind filed in April	23
8	Monthly mean wind filed in May	24
9	Monthly mean wind filed in June	25
10	Monthly mean wind filed in July	26
11	Monthly mean wind filed in August	27
12	Monthly mean wind filed in September	28
13	Monthly mean wind filed in October	29
14	Monthly mean wind filed in November	30
15	Monthly mean wind filed in December	31
16	The position of oceanographic buoys deployed in the	
	Gulf of Thailand	34
17	Comparison of measured and computed current at Rayong	
	in January 1997	36
18	Comparison of measured and computed current at Ko Chang	
	in February 1997	37
19	Comparison of measured and computed current at Rayong	
	in February 1997	38
20	Comparison of measured and computed current at Ko Sichang	
	in February 1997	39
21	Comparison of measured and computed current at Hua Hin	
	in February 1997	40

Figur	re	Page
22	Comparison of measured and computed current at Ko Chang	
	in March 1997	41
23	Comparison of measured and computed current at Rayong	
	in March 1997	42
24	Comparison of measured and computed current at Ko Sichang	
	in March 1997	43
25	Comparison of measured and computed current at Petchaburi	
	in March 1997	44
26	Comparison of measured and computed current at Hua Hin	
	in March 1997	45
27	Comparison of measured and computed current at Ko Chang	
	in April 1997	46
28	Comparison of measured and computed current at Rayong	
	in April 1997	47
29	Comparison of measured and computed current at Ko Sichang	
	in April 1997	48
30	Comparison of measured and computed current at Petchaburi	
	in April 1997	49
31	Comparison of measured and computed current at Hua Hin	
	in April 1997	50
32	Comparison of measured and computed current at Rayong	
	in May 1997	51
33	Comparison of measured and computed current at Petchaburi	
- 0	in May 1997	52
34	Comparison of measured and computed current at Hua Hin	
	in May 1997	53
35	Comparison of measured and computed current at Ko Chang	
	in June 1997	54
36	Comparison of measured and computed current at Rayong	
	in June 1997	55

Figure	e .	Page
37	Comparison of measured and computed current at Ko Sichang	
	in June 1997	56
38.	Comparison of measured and computed current at Petchaburi	
	in June 1997	57
39	Comparison of measured and computed current at Hua Hin	
	in June 1997	58
40	Comparison of measured and computed current at Ko Chang	
	in July 1997	59
41	Comparison of measured and computed current at Rayong	
	in July 1997	60
42	Comparison of measured and computed current at Ko Sichang	
	in July 1997	61
43	Comparison of measured and computed current at Ko Chang	
	in August 1997	62
44	Comparison of measured and computed current at Rayong	
	in August 1997	63
45	Comparison of measured and computed current at Ko Sichang	
	in August 1997	64
46	Comparison of measured and computed current at Ko Chang	
	in September 1997	65
47	Comparison of measured and computed current at Rayong	
	in September 1997	66
48.	Comparison of measured and computed current at Ko Sichang	
	in September 1997	67
49	Comparison of measured and computed current at Hua Hin	
٠	in September 1997	68
50	Comparison of measured and computed current at Ko Chang	
	in October 1997	69
51	Comparison of measured and computed current at Rayong	
	in October 1997	70

Figure	Page
52	Comparison of measured and computed current at Hua Hin
	in October 199771
53	Comparison of measured and computed current at Ko Chang
٠	in November 199772
- 54	Comparison of measured and computed current at Rayong
	in November 199773
55	Comparison of measured and computed current at Hua Hin
	in November 199774
56	Comparison of measured and computed current at Ko Chang
	in December 1997
57	Comparison of measured and computed current at Rayong
	in December 199776
58	Comparison of measured and computed current at Ko Sichang
	in December 199777
59	Comparison of measured and computed current at Petchaburi
	in December 199778
60	Comparison of measured and computed current at Ko Tao
	in December 1997
61	Comparison of measured and computed current
	at Nakorn Srithammarat in December 199780
62	Relationship between measured and computed current at Ko Chang82
63	Relationship between measured and computed current at Rayong83
64.	Relationship between measured and computed current at Ko Sichang84
65	Relationship between measured and computed current at Petchaburi85
66	Relationship between measured and computed current at Hua Hin86
67	Relationship between measured and computed current at Ko Tao87
68	Relationship between measured and computed current
	at Nakorn Srithammarat88
69	Monthly mean current in January91
70	Monthly mean current in February92

.93 .94 .95 .96
.95
.96
.97
.98
.99
00
01
02
09
10
11
12
13
14
1