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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

An introduction of cancellation ideals may be found in [2]. Characterization
of cancellation ideals was given by D.D.Anderson and M.Roitman in [1], but
checking a given ideal is a cancellation ideal, or not, is not easy to show by using
their theorem. We can found some interesting notion for ideals in [3].

In this chapter, we give precise definitions, quoted results, and give some results

for using in the next two chapters.

Definition. Let R be a commutative ring with identity. An ideal I of R is called

a cancellation ideal if whenever [ B = [C for ideals B and C of R, then B = C.

Definition. An integral domain R is a unique factorization domain provided
that:

(i) every nonzero nonunit element a of R can be written a = ¢j¢2 - - ¢, with
1, ..., ¢y irreducible,

(ii) if a =¢1cz -+ - ¢, and a = dydy + - -~ d,, (¢, d; irreducible), then n=m and for

some permutation o of {1,2,...,n}; ¢; and dy(;)-are associates for'every 1.
Definition. A ring R is called a Boolean ring if for every a € R, a? = a.

Definition. A ring R is Artinian if R satisfies the descending chain condition

on ideals.

The Theorem 1.1 is a well-know result.



Theorem 1.1. If D is a unique factorization domain, then D[z] is a unique

factorization domain.

Since Z is a unique factorization domain, Z[z] and Z[z,y| are unique factor-
ization domain.
The next two results are given in [1]. The first lemma is easy to see and we

always refer to it in the next chapter.

Lemma 1.2. Let R be a commutative ring with identity and a € R. Then (a) is

a cancellation ideal of R if and only if a is not a zero divisor of R.

Theorem 1.3. Let R be a commutative ring with identity . An ideal I of R is a

cancellation ideal of R if and only if I is locally a reqular principal ideal.

From Lemma 1.2 , we have that every ideal of Z , except {0}, is a cancellation

ideal of Z. The following theorem is an interesting result.
Theorem 1.4. Every proper ideal in Zy, is not a cancellation ideal of Z,,.

Proof. Let I be an ideal in Z,, such that I # Z,, and I # {0}. Since Z,, is a
principal ideal ring , I = (k) for some k € Z,, ~ {0}. Let d be the g.c.d. of k and
m. Then d # 1,d | k and d | m. There exist nonzero elements = and y of Z such
that k = dx and m = dy. Thus ky = dry = xdy = xm, so kj = ky = 0. Hence k
is a zero divisor of Z,,. By Lemma 1.1, I = (k) is not a cancellation ideal of Z,, .

Clearly, {0} is not a cancellation ideal of Z,; for m)1 and {0} is a cancellation
ideal of Z,,, for m = 1.

Next, we have to show that Z,, is a cancellation ideal of Z,, for m > 1.
Let m7 and 7y be elements of Z,, such that Z,,(n;) = Z,(n3). Since 1 is the
multiplicative identity of Z,, , (71) = Zn(n1) = Zn(n2) = (N2).

Therefore, Z,, is a cancellation ideal of Z,, . O



Theorem 1.5 is one that easy to prove but in order to check whether a given

ideal is a cancellation ideal, is not practical.

Theorem 1.5. Let R be a commutative ring and I an ideal of R such that I
contains an element which is not a zero divisor of R. Then I is a cancellation

ideal of R if and only if for every ideals A, B of R such that AUB C I, [A=1B

implies A = B.

Proof. (—) Clearly.

(<) Let A and B be ideals of R such that /A = IB and k an element of I which
is not a zero divisor of R. Then (k)IA = (k)IB, so I{k)A = I{(k)B. Since
kel, (kYA U(kyBC,so (k)A = (k)B.By Lemma 1.2, (k) is a cancellation

ideal of R, so A = B. O

We give the precise definition for a cancellation ideal belonging to an ideal

which we consider in Chapter III here.

Definition. Let I be an ideal in the commutative ring R with identity.
A cancellation ideal J of R is said to be a cancellation ideal belonging to

ideal 7 if I C J.

The following statements are facts about cancellation ideals of some familiar
rings.
1. A maximal ideal in Z[x] need not be-a cancellation ideal.
An example is the maximal ideal (2;x) of Z[x] (see Chapter II-for (2, z) is not a
cancellation ideal).
2. For any field F, F[z]is a PID , so all ideals of F'[x], except {0}, are cancellation
ideals of F[z|(by Lemma 1.2).
3.For a € Z,|a| > 1 and a is not prime, the ideal (a) is a cancellation ideal but

not a maximal ideal of Z (by Lemma 1.2).



4. Let R be a subring of an integral domain 7. If I is a cancellation ideal of R,
then IT is a cancellation ideal of T This fact is quoted from [1].
5. The ideal I = (2, x?) of Z[z] is not a cancellation ideal and a cancellation ideal

of Z[z] belonging to I must be Z[z], see Chapter III.
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CHAPTER I1

CANCELLATION IDEALS OF SOME RINGS

In this chapter, we consider ideals of arbitrary commutative ring in Theorem
2.1-2.3, and we consider ideals in some special forms of Z[z] and Z[z, y] in Theorem
2.4-2.16. Ideals of Boolean rings with identity and ideals of an Artinian rings with

identity have considered in Theorem 2.17-2.18.

Theorem 2.1. Let Iy, Iy, ..., [, be ideals of a commutative ring R.

Then I, 15...1, is a cancellation ideal of R if and only if I; is a cancellation ideal

of R for each j € {1,2,....,n}.

Proof. Assume that I115...1, is a cancellation ideal of R.

Letj € {1,2,...,n} and B and C be ideals such that [;B = I,C.

Then I; BI...J; 1 Ligy.o Ay = L,CH Lo L Ly, so 115 1,B = 111,...1,C. Since
L I...I, is a cancellation ideal of R, B = C'. Thus /; is a cancellation ideal of R.
Next , assume that for all j € {1,2,...,n}, I, is a cancellation ideal of R.

Let B and C be ideals such that I1/1...1,B = Ii1,...1,,C.

Since [ is a cancellation ideal of R, I715...1,B = I,15...1,,C.

Since I, is a cancellation ideal of R, I3l,...1,B = I51,...I,C. By the same argu-
ment, we must have B = C' .

Thus I 15...1,, is a cancellation ideal of R. O

Theorem 2.2. Let R be a commutative ring.

(i) If A, Band C' are ideals of R such that A+ B, A+C and B+C are cancellation



ideals of R, then A+ B+ C is also a cancellation ideal of R.
(i) If every ideal generated by two elements of R is a cancellation ideal, then every

finitely generated ideal of R is a cancellation ideal of R.

Proof. (i)Assume that A, B and C are ideals of R such that A+ B, A + C and
B + C' are cancellation ideals of R . By Theorem 2.1 , (A+ B)(A+C)(B+C) is
a cancellation ideal of R. Since (A+ B+ C)(AB+ AC + BC) = (A+ B)(A+
C)(B+C), A+ B+ C is a cancellation ideal of R.

(ii) Assume that each ideal generated by two elements of R is a cancellation ideal.
Let k£ be an integer greater than 1 and suppose that every ideal generated by
a set of k elements is a cancellation ideal of R. Let xy,xs,...,zx11 be arbitrary
elements in R. We have that (zy, 2o, ...,241) = (1) + (22, ..., xk) + (Tg41) and
by assumption (z1) + (€2, ..., &), (@1) + (x41) and

(g, ...,xr) + (zr41) are cancellation ideals of R. By (i), (z1,22,...,Zk41) Is a

cancellation ideal of R. O

Theorem 2.3. Let I be a proper ideal of a commutative ring R with identity.

If I is a cancellation ideal of R, then I is not a minimal ideal .

Proof. Assume that [ is a cancellation ideal of R. We have that {0} C I> C I.
If I? = {0},then II = {0} = I{0},soI = {0}. A contradiction since {0} is
not a cancellation ideal of R. If ?0= [, then IT = I =1(1),s0 [ = R,

a contradiction. Thus {0} C I* C I, so I is not a minimal ideal. O

Example. Every nonzero ideal of Z is a cancellation ideal of Z, so it is not a
minimal ideal.
Converse of Theorem 2.3 is not true . For example , {0} C (z) C (2,z) in Z[z]

and (2, x) is not a cancellation ideal of Z|x].

Theorem 2.4. (2,x) is not a cancellation ideal of Z|x].



Proof. We have that

(2,7)(4,2%) = (8,22° 4z,2°)

= (2,2)(4,2z,27).
Suppose that 2z € (4, 2?). Then there exist f(z),g(x) € Z[z] such that

2z = 4f(z) + 2%g(x).

Let f(x) = Zaixi and g(z) = Z bz’ where a;,b; € Z and m,n € N. Then
=0 j=0

m n
A — E da;x" + E b, Db
i=0 =0

By comparing the coefficients, we get 2 = 4a; which is impossible. Hence 2z ¢
(4,22), so (4,2%) # (4,2x,2%). Therefore (2,z) is not a cancellation ideal of

Zz). O
Theorem 2.5. Let a,b € Z~ {0}. Then (a,bx) is a cancellation ideal of Z|x] if
and only if a | b.

Proof. Assume that (a,bz) is a cancellation ideal of Z[z|. Since

(a,bx)(a? abx,b’2?) = (a®, a®bx, ab’z?, b*2®)

= (a, bx) <a2, 62x2>,

(a?, abz;*x?) = (a? b*2?). So abr € (a®b*x?). There exist f(x),g(x) € Z[z]

such that

abr = a®f(x) + b*2%g(x).

Then f(x) = Z a;x" and g(x) = Z bz’ for some a;,b; € Z and m,n € N. Thus

i=0 J=0



m n
abr = E ala;xt + E Vbl
=0 =0

By comparing the coefficients, we get ab = a?ay, and so b = aay, that is a | b.
Assume that a | b. We have (a,br) = (a) which is a cancellation ideal of

Z[z] by Lemma 1.2. O

In Theorem 2.4, we consider an ideal generated by two elements of Z[z]| which
have no nonunit common factor. Next we will consider an ideal generated by two

elements of Z[z| which have a nonunit common factor.
Example. ((x — 1)%,2% — 1) is not a cancellation ideal of Z|x].

Proof. We have
((z—1)%2% - 1) (@ =1 (2 = 1)(z — 1), (z* — 1)*)
= ((z—1)% (& = D@ =) (z = 1)*(2* = 1), (=* - 1)°)
= (-1 2> - 1){{z -5 (2 = 1)),

Suppose that (22 —1)(z —1)? € ((x — 1)*, (#* — 1)?). Then (z* — 1)(z — 1)?

= f(z)(z — 1)* + g(x)(z> = 1)* for some f(z),g(x) € Z[x]. So
G- DEt1) = f@)e <12+ gla)e+ 1)
(= D((@+1) =flz)@=1)) = gla)(z+1)" (2.1)
Since z—1 and (x+1)? are relatively prime , x—1 | g(x). There exists hy(x) € Z|x]

such'that g(z) = hy(x)(z —1).

From (2.1), we get
(@ -1z +1) = fla)(z—1) = h(@)(z-1)(z+1)

(x+1) = fla)(z—1) = Mh(z)(z+1)%

(x+1)(1=h(z)(x+1) = flx)(x—1). (2.2)



Since  — 1 and = + 1 are relatively prime,  + 1 | f(z). There exists hy(z) € Z[x]
such that f(z) = ho(x)(x + 1).

From (2.2), we get

(x 4+ 1)(1 = hy(z)(x 4+ 1)) = ho(z)(x 4+ 1)(x — 1),
1 =h(x)(z+ 1)+ hao(x)(z —1).
Let hy(z) = Zm:aixi and ha(z) = i bjl'j where a;,b; € Z and a,,,b, # 0 and

7=0
m,n € N.

Since 1 = (Z a;x")(z+ 1)+ (Z bjz!)(xz —1), m=n and
i=0 =0
1 = (CL() - bo) + (CLO +ai + bo 7 bl)ZE + (a1 + as + b1 — bg)l’Z + ...+
(@n_1+ Qp + byq — bp) 8" + (a + by) "L

Thus

ao—b():l,
a0+b0+a1—61:0,

a1+b1+a2—62:0,

Qp—2 + bn—2 + ap-1 — bn—l =0 )
an—1+bn—1+an_bn:07

an +b, =0,

so 2(ag + a1 + ...+ a,) = 2a9+2a; + ... +2a, = 1, a contradiction. Then

(@2 =Dz =1)* ¢ (=1 (2% = 1)%).

Therefore, ((z — 1)%, 2% — 1) is not a cancellation ideal of Z|[x]. O

Theorem 2.6 gives a necessary and sufficient condition for ideals generated by

two nonzero elements of a unique factorization domain to be cancellation ideals.
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Theorem 2.6. Let R be a unique factorization domain, a, b € R~ {0} and d
the greatest common divisor of a and b. Then (a,b) is a cancellation ideal of R if

and only if (a,b) = (d).

Proof. Assume (a,b) = (d). By Lemma 1.2, (d) is a cancellation ideal of R. Thus
(a,b) is cancellation ideal of R.

Next, assume that (a,b) is a cancellation ideal of R. Since d is the greatest
common divisor of a and b, a = hid and b = hod for some hq, hy € R and h; and

hy have no common factor. We have
(a,b)(a®,b?)
= (a3, a®b, ab?*, b%)
= (a,b)(a?, ab,b?).
Since (a,b) is a cancellation ideal of R, ab € (¢ b?). Thus ab = aa® + 3b* for
some «, 3 € R. So
d*hihy = ad®h? + Bd*h3,
hihy = ahi + Bh3 ,sinced # 0,
hl(hg—&hl) = ﬁh% (23)
Since h; and hy have no nonunit common factor , hq| 3. There exists B € R such
that 6 = hlB
From (2.3),we get
hi(hs — ah,). = hiBh3,
ho —ah; = Bhg ,since hy # 0, and so
hg(l—Bhg) = Oéhl. (24)

Since hy and hy have no nonunit common factor , hs| a. There exists A € R such

that « = hyA.
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From (2.4),we get

ho(1 — Bhs) = hoAhy,
1= Ahy + Bhy ,since hy # 0,and so

= Aa + Bb.
Hence (a,b) = (d). O

Corollary 2.7. Let f(x), g(x) € Zz] ~ {0} and d(x) the greatest common
divisor of f(x)and g(x). Then (f(x),g(x)) is a cancellation ideal of Z[x] if and
only if (f(x), g(x)) =(d(x)).

Example. The ideal (f(z)", f(z)* 'g(x),..., f(x)g(x)", g(x)") is not a cancella-
tion ideal of Z[z] for all f(x), g(x) € Z[z] such that (f(z), g(z)) is not a principal

ideal. This is because

n copies

and (f(x), g(x)) is not a cancellation ideal of Z[z]| by Corollary 2.7 for all f(z), g(x) €

Z|z] such that (f(x), g(z)) is not a principal ideal.

Theorem 2.8. Let f(z); g(x) h(z) € Z[x]) ~ {0} be such that ax™ bx"™ and cx'
are the minimum degree monomials in f(x), g(x), h(x),respectively. Suppose that
a#0,a1band 0 <m <n <I. Then (f(x),g(x),h(x)) is not a cancellation ideal

of Z[z].

Proof. We have
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(f(2),g(z), h(2))(f()*, g(x)?, h(x)*, g(x)h(x))
= (f(2)°, f(x)g(2)?, f(x)h(2)?, f(z)g(z)h(x), g(x) f(x)?, g(x)*, g(a)h(x),
g(x)*h(x), f(x)*h(z), h(x)*)
= (f(x), 9(x), h(2))(f(2)*, g(x)?, h(x)*, g(2)h(x), f(z)g(x)).

Suppose that f(z)g(z) € (f(z)?, g(x)?, h(z)2, g(z)h(z)). Then there exist fi(z),
fo(x), f3(x), fa(x) € Z[z] such that

f@)g(z) = fix)f(x)? + fol@)g(@)® + fs(@)h(@)® + fa(x)g(x)h(z).

Note that the minimum degree monomial in f(z)g(x) is abx™ ™.

Since each nonzero term in fo(2)g(2)* + fs(x)h(z)* + fi(x)g(x)h(x), if exist, has
degree at least 2n, we have that abz™"™ is a term in fi(x)f(z)?. Since the mini-

2,..2m

mum degree monomial in f(x)? is a*>z?™ and a # 0, the minimum degree monomial

in f1(z) is dz"~™ for some d € Z. Thus ab = ad, so a | b, a contradiction.

Hence f(x)g(z) ¢ (fx)% g@)2, h(x)? gla)h(z),

so (f(2)? 9(2)?, h(2)? g(@)h(z)) # (f(x)?, 9(x)?, h(z), g(z)h(z), f(z)g(x)), that
is (f(z), g(x), h(z)) is not a cancellation ideal of Z[z]. O

Example. Let m € N. Then (2,2™) = (2,2™, ™) is a cancellation ideal of Z[x]

by Theorem 2.8.

Example. Let h(z) € Z[z] \ {0} be such that its minimum degree monomial has
degree at least 2. We have
(24,20 + 422 h(z)) = (2 + 3,(27 + 42°) —(2 + x)x, h(z))
= (2 + 2,322 h(z)).

Then (2 + z,2x + 42%, h(x)) is not a cancellation ideal of Z[z] by Theorem 2.8.

We consider ideals of Z[z, y] in Corollary 2.9-Theorem 2.16. Since Z is a unique
factorization domain, Z[z, y] is a unique factorization domain.Corollary 2.9 follows

from Theorem 2.6 directly.
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Corollary 2.9. Let f(z,y) , g(z,y) € Zlz,y] ~ {0} and d(z,y) the greatest

common diwisor of f(x,y)and g(x,y). Then (f(x,y), g(x,y)) is a cancellation ideal

of Zlz,y] if and only if (f(x,y),9(z,y)) = (d(z,y)).

Theorem 2.10. Let a,b,c € Z ~ {0} and m,n € N.

Ifa | band a | c, then {a,bx™, cy") and {a,cx™, by"™) are cancellation ideals of
Zlz,yl.

Ifatb oratc, then (a,bx™, cy™) and {a,cx™, by™) are not cancellation ideals of

Zlz,y| .

Proof. Clearly , if a | band a | ¢ , then (a,bz™, cy”) = (a) = (a,cx™, by") is a
cancellation ideal of Z[z, y| by Lemma 1.2.

Consider the cases a4 b and a 1 c.

Case 1: atb.

We have

{a,bx™, cy™){a?, b2x®™, acy™, c*y*")

2n 33m 2 T2, 3,,3n
bz bx™y )

= {(a?,ab?z*™, a*bz™, ac’y ,ca’y™, ch*y"x®™  abcx™y", cy

= (a,bz™, cy™)(a?, abz™, acy™, b*x*™, bex™y", >y,

Suppose that abx™ € (a?, b*x*™ acy™, c*y*"). Then there exist fi(x,y),

fa(x,y), fs(, y), fa(z,y) € Z[z,y] such that

aba™ = o foll ) + a2 falr, ) L a9 b 2P R, y).

Since each term in b*z*™ f5(z,y) has degree at least 2m and each term in acy” f3(x, y)+
Ay? fu(x,y) is a multiple of y , abx™ must be a term of a®f(z,y).

Let fi(z,y) = Z Zauxy

7=0 =0

Then ab = a,, a?, s0 b = a,,pa which contradicts to the fact that a f b. Thus

(a® 0?2 acy™, 2y*™) # (a? abz™, acy™, b*x*™, bex™y™, Py*").
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Hence (a, bx™, cy™) is not a cancellation ideal.
By interchanging x and y we can also that (a,cz™, by™) is not a cancellation
ideal of Z[x, y].
Case 2: afec.
By Case 1, we have immediately that (a,cx™, by") and (a,bx™, cy") are not can-

cellation ideal of Z[z, y]. O

Theorem 2.11. Let [ = ni where i,n € N and n > 2. Then (z' — ', 2!, 9') is

not a cancellation ideal of Z[z,y].

Proof. We have

(o — o, 2 ) (@ — )2, 2ty
= ((ri—y)3, (@ —y)a? (' =y )y, (=) 2ah, 2P,y ()2, 2 o,
(' = y)a"y')
— (¢ — o, by (o )2 22 P (2 — ), (o — o), o).
Suppose that (z¢ — y®)z! € ((a® — )%, 2%, y*, 2'y"). Then there exist fi(z,v),
fa(x,y), f3(x,y), fa(z,y) € Z[z, y] such that
(' —y)a' = filey)(@* =y + fola,y)a* + f(@, )™ + fi(z,y)z'y"
Since each term in fo(x, y)x®'+ f3(z, y)y*+ fi(z, y)z'y' has degree at least 21, xT'—

rly? must be a term in fi(z,y) (2% — 22y’ + y*).

We may assume that £ > [
Note that for all 0 < j <k,

Qo,; = 0. (25)

By comparing the coefficients of 2% and z'y?, we get

A(—i)0 = On-1)io = 1 (2.6)
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and ag_2); — 200-i)0 = An-2)ii — 20(n—1)i,0

From (2.6) and (2.7),we have

a(n-2yi; = L. (2.8)

Let r #n and 2 <r < n.

By comparing the coefficients of 2!~ Diyr = 2(=(=1)iyri e get
A(n—r—1)iri — 20(n=r)isr—=1)i T C(nrt1)isr—=2)i—=0,
An—r—1)igri = 20(n—p)i(r=1)i — Q(n—r+1)i,(r—2)i-
If r =2, then
A(n—3)i2i = 20m—2)ii — An-1)i0 = 1, (2.9)
from (2.6) and (2.8).
If r = 3, then
A(ned)igi = 20(n=3)i2i — An—2)ii = 1, (2.10)
from (2.8) and (2.9).
Continue this process, if r =n — 1, then ag p—i)i = 2a; (n—2)i — @2i(n-3 = 1,

contradict to (2.5). Hence (2 — y")a! & ((z* — y*)?, 2%, y?*, 2y |, so
<($Z - yi)27 $2l7 y2la $lyl> 7é <(£L’Z - yi)2a x2lv y217 (‘TZ - yi)xl’ (xl - yi)yl’ xlyl> - There-

fore ,(x® — y¥, 2!, 4/") is not a cancellation ideal of Z[z, y]. O

Theorem 2.12. Leti,l € N be such that i <l. Ifa € Z ~ {1, —1}, then

(' + a, 2,y and (y* + a, 24, y) "are not cancellation ideals of Zlx,y].

Proof. Assume that a € Z ~ {1,—1}. We prove only the case (' +a, 2!,y is not
a cancellation ideal of Z[x, y].

If a =0, then (z° +a,2',y) = (2% y"). By Corollary 2.9,(z* + a, 2!, ') is not a
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cancellation ideal of Z[z, y].

Consider the case a € Z ~ {1,—1,0}. We have

(@' +a,x', y"y((z" + a)?, 2y alyt)
_ <(xz + @)3, (xz + CL).TQZ, (iL‘Z + Cl)y2l, (xz + (l)i[flyl, (xz + CZ)Q.CIZ'Z,Z'?)Z,iL'lyQZ,l'QZyl,
(' + a)?y', y*')

= (¢’ +a, 2", ¢") (2" + a)?, 2%y, (¢" + a)2!, (¢" + a)y', 2'y').

Suppose that (z'+a)y’ € ((z'+a)?, 2%, y*, 2'y'). Then there exist fi(x,y), f2(,y),
fs(z,y), faz,y) € Z]z,y] such that

(@' +a)y = filz,y)@+a) + folz, y)2* + f(z,9)y> + fa(z,y)'y,

'y +ayt = filz, y)a® + 208’ +a?) + folx, y)2® + fs(z, y)y*" + fa(z,y)2'y".
Since each term in fo(x, y)z? + f3(z,y)y” + filx,y)z'y' has degree at least 21 ,

r'y! + ay! must be terms in fi(z,y) (2% + 2aa’ + a?).

k P
Let fi(z,y) = Z Zamjxmyj.
j=0 m=0
By comparing the coefficients of 4, we get @ = aag;. Since a # 0,1 = aay,.
This implies that a = 1 or a = —1, a contradiction.

Thus ((«* + a)? 22, % a'y') # (@ +a)? 2*,y*, (2' + )2, (z' + a)y', 2'y").

Hence (2 + a, 2!, ') is not a cancellation ideal of Z[x, y]. O

Corollary 2.13. Leta'€ Z,i €N and | = 2i. Then (2t +a,2',y') is a cancellation

ideal of Z[x,y| if and only if a € {1,—1}.

Proof.” (—)Assume that a € Z ~{1,—1}. By Theorem 2.12 and{ = 2i > i,
(z' + a,2',y') is not a cancellation ideal of Z[z, y].

(<) Assume that a € {1,—1}. Then 2! — 1 =2% — 1 = (2' — 1)(2* + 1)

€ (i +a,2yl), s0 1l =2t — (2! = 1) € (x' + a, 2", ).

Thus (z° + a,2',y') = Z[z,y], which is a cancellation ideal of Z[z, y]. O
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Theorem 2.14. (x*y' | 2™ | y") is not a cancellation ideal of Z[x,y] for

1<k<mandl <l <n.

Proof. We have

<C(7kyl, xm7 yn> <m2ky2l7 x2m7 y2n7 karmyl)

= (gBky3l g2m+h 2k+m

L .k, 2n+l
rrys, T ) )

2l
Y )

2k, 2l4+n ,.2m,n
)

3m ,.m,2n
x =Ty, Y =y,

Y Y

3n ,.k+m, l+n
Yy, gty

— k,l 2 v, 2N 2 k+ U .k, l+
- <$y7xm7yn><x y ’xm7ynax my7$y n7xmyn>

Suppose that x’“y”” = <$2ky2l7 z2m. y2n’ $k+my )

Then there exist f1($7y)a fQ(xay)7f3(x7y)a f4(I,y) < Z[l‘,y] such that

2y = file,y)a®y? F flry)a®™ + fe y)y™ + fule,y)a™myL (2.10)

Since each term in fi(z,y)2®*y* + folz, y)2*™ + fa(z,y)z"t™y' has degree of x
greater than k and each term in fs(x,y)y*" has degree of y greater than

[+ n, it is impossible to write #*¢y'*" as the sum in (2.11), a contradiction.

2k, 2l .2m ,2n .k+m,,l 2k, 2l ,.2m ,2n ,..k+m,l ,.k,Il4+n ,.,.m,n
Thus (z2y*, 22", y*", 2"y # (oY ey, oty byt oy,

so {xFyl 2™ y") is not-a cancellation ideal. O

Theorem 2.15. Let f(z,y), 9(x,y), h(x,y) € Z]x,y]»{0} be such that ax™ y™2, ba™ y"
and cxty'2 are the minimum degree monomials in. f(z,y), g(x,y), h(x,y),respectively,
where a # 0,a 1 band 0. < my+ mo < ny +ng <1y + b

Then {f(z;y),9(x,y), h(z,y)) is not a cancellation ideal of Zlx,y].

Proof. "We have

(f(z,y), 9(x,y), bz, y)){f(x,y)?, g(x,y)? bz, y)?, g(z, y)h(z,y))
= (f(z,y)*, f@,9)g9(x,v)? fx,9)h(z,y)?, f(z,9)9(x, y)h(z,y), g(z,y) f(z,y)?,

9(x,y)%, g(x, y)h(x,y)?, g(x,y)*h(x,y), (2, y)*h(z, y), h(z,y)*)
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= (f(z,y), 9(z,y), h(z,y))(f(x,9)% g9(z,y)? h(z,y)* gz, y)h(z,y),

f(x,y)g9(x,y))

Suppose that f(z,y)g(x,y) € (f(z,y)*, 9(z,y)*, h(z,y)*, g(x,y)h(z,y)). Then there
exist fi(z,y), fo(z,vy), fs(z,y), fa(z,y) € Z[z,y] such that

f@,y)g(a,y) = filz,y)f(@,y)*+fa(z, 9)g(z, y)*+ fs(z, y) Mz, y)* + fa(z, y)g (@, y) Az, y)
Consider the term abz™*™1y™m2t"2 in f(x y)g(x,y).

Since each nonzero term in fo(x, v)g(z, y)*+ f3(x, v)h(z, y)*+ fa(z, v)g(x, y)h(z, ),

if exist, has degree at least 2n; + 2no,we have abx™*"1y™2t"2 ig the term in

2,..2mq

fi(x,y)f(z,y)?. Since the minimum degree monomial in f(z,y)? is a’x 2ma

Y

and a # 0, the minimum degree monomial in fi(z,y) is da™ ~™y"2~™2 for some
d € Z. Thus ab = a’d ;80 a | b, a contradiction.

Hence f(z,y)g(x,y) & (f (@ y)% g9(a,9)* bz, )% g(x,y)h(z,y)), so

(f(x,9)? 9(x,y)%, W, y)?, g(z, y)h(x, y)) #

(f(2,9)? g(x,9)? b, y)* g (@), ), (2, y)g(z, y),

that is (f(x,y), g(x,y), h(z,y)) is not a cancellation ideal. O
Theorem 2.16. Let f(x),g(x), h(y) € Z]z,y| ~ {0} be such that h(y) is a
polynomial which has no the constant term.

Assume that (f(x),g(x), h(y)) is not an ideal generated by one or two

polynomials in Z[x,y]. Then (f(x), g(x),h(y)) isnot a cancellation ideal of Z|x, y].
Proof. We have
(f(@), g(z). hw)){f ()2, g(2)* Rly)? g(2)h(y))
= (f(2)®, f(z)g(2)?, f(2)h(y)?, f(z)g(x)h(y), 9(x) f(z)?,
(

9(x)?, g(x)h(y)?, g(x)*h(y), f(x)*h(y), h(y)*)
= (f(x),9(x), () {f(x)?, g(x)? h(y)?, g(x)h(y), f(z)g(x)).

Suppose that f(z)g(z) € (f(z)?, g(z)? h(y)? g(x)h(y)). Then there exist fi(z,y),
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fo(z,y), fs(z,y), fa(z,y) € Z[z,y] such that
f@)g(x) = fi(z,y)f(2)* + folz, y)g(x)* + fs(z, Y)h(Y)* + fa(z,y)g(x)h(y)
= (fro(,y) + fry (@, ) f(2)* + (fou(@,9) + foy (2,))9(2)+
falz, y)h(y)® + fa(z, y)g(x)h(y),

where fi,(2,y) is the partial polynomial of f;(x,) which has no terms in y and

fiy(z,y) = filz,y) — fio(z,y) for all i =1,2.

Then f(2)g(x) = (fio(z, y) f(@)* + fau(z:9)9(2)?) + (fiy (@, y) f(2)°
+foy(2,9)g(2)* + f3(T)h(Y)? + fa(z,y)g()h(y)).

This implies f1,(z,y) f(2)* + fay (2, ) 9(2)* + falz, ) h(y)* + fu(x,y)g(x)h(y) =0,

SO

F@)g(@) = fro(w,y)f(@)° + foolm,)g(2)”. (2.12)
We can write that f(z) = d(z)a(z) and g(z) = d(x)B(x) for some d(x), a(z), f(x)
€ Z[z,y], and a(x) and B(x) have no nonunit common factor in Z[z, y|.

By (2.12),

d(z)a(2)d(2)B(x) = fio(z.y)d(@) a(@)’ + foulz,y)d(z)*B(z)’,
a(2)B(x) = fio(z y)al@) + fule,y)6(),
a(z)(B(z) - fralz.y)a(@) = foul(z,y)B(x)* (2.13)
Since a(z) and B(z) have no nonunit common factor , a(z) | fou(z,y). Then
Jor(,y) = o) (5 y) for some ha (2, y) € Z]w; y].
By (2.13),
a(@)(B(z) - fa(r,y)a(@). = a@)hi(zy)p(@)?
Bz) = fuule,y)a(z) + hi(z,y)B(z)’, since a(z) # 0,
Bx)1 =z, y)B(x) = fialz,y)o(z). (2.14)
Since a(z) and B(z) have no nonunit common factor , B(z) | fi(z,y). Thus

fie(z,y) = B(x)ho(z,y) for some hy(z,y) € Z[z,y).
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By (2.14),

A(z)(1 = hi(z,y)8(x)) = B(x)ha(z, y)a(z),
1= hi(z,y)8(x) + ha(z, y)a(z), since f(x) # 0,
d(z) = hi(z,y)d(x)3(x) + ho(z, y)d(z)a(z),

d<$> = h1<£€,y)g($) + hZ(xay)f(x)

That is (d(z)) = (f(x),g(x)),so (f(x),g(x), h(y)) = (f(x),9(x)) + (h(y))

= (d(z),h(y)) , a contradiction.

Then f(z)g(z) ¢ (f(@)*, g(x)?, hly)* g(x)h(y)).
so (f()? 9(x), h(y)? g(@)ly)) # (@)%, 9(2)?, h(y)?, 9(x)h(y), f(z)g(x))-
Hence (f(z), g(x), h(y)) is not a cancellation ideal of Z[z, y]. O

Theorem 2.17. FEvery proper ideal I in any Boolean ring R with 1 is not a

cancellation ideal of R.

Proof. Let I be a proper ideal in a Boolean ring R with 1. Then I? = I = IR.

But I # R, so I is not a cancellation ideal of R. O

Theorem 2.18. Let R be a commutative Artinian ring with 1 , and suppose that
R is not a field. Then-the following statements hold.
(i) For all a € R such that {a) # R, (a) is not a cancellation ideal of R.

(ii)For all b,c € R such that (b, c) # R, (b;¢) is not a cancellation ideal of R.

Proof. (i) Let a € R . We have {(a) 2 (a®) 2 (a®) D ---. Since R satisfies
the descending chain condition, choose the smallest positive integer n such that
(a) = (a"™).

Case 1: n=1.
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Since (a)R = (a) = (a®) = (a){a) and (a) # R, (a) is not a cancellation ideal
of R.

Case 2: n > 1.

Since (a){a"" ') = (a™) = (a"™') = (a)(a") and

(@™ 1) # (a™), (a) is not a cancellation ideal of R.

(ii) We have (b,c) 2 (b*,bc,c®) D (b3,b%c,bc* ¢®) D ---. Since R satisfies
the descending chain condition , choose the smallest positive integer n such that
(b, 6" e, . b My = (BT b, .. be ).

Case 1: n = 1.

Since (b,c)R = (b,e) = (b*,be,c?) = (b,c){b,c) and (b,c) # R, (b,c) is not a
cancellation ideal of R.

Case 2: n > 1.

Since (b, c) (0" 1, 0" ¢, .. b2 Y = (00" e, ., b )

= (" b, ..., b, Y =D, ¢) (0", 0" e, ..., bc™ !, ) and

(L on2c, . be 2 ey £ (0 0 e, b ), (b, ) is not a cancellation

ideal of R. O



CHAPTER I11

CANCELLATION IDEALS BELONGING TO IDEALS

In this chapter, we consider cancellation ideals of Z[z]| belonging to ideals
(2,2™), which we have already showed in the example follow from Theorem 2.8

that it is not a cancellation ideal of Z[z| for all m € N.

Theorem 3.1. Let a € Z ~ {0} and J a cancellation ideal belonging to ideal

(x + a,z%). Suppose that J N 7Z is a prime ideal of Z. Then J = Z|x].

Proof. Since 2? — a*= (x +a)(z —a) and 2% € J, a® = 2* — (2* — a?) € J.

By the assumption, a € J, so z = (¢ +a) —a € J.

Ifa=1ora=—1, then J = Z[z|.

Next, consider the case a € Z ~ {0,1, —1}.

Clearly, |a| € J. Assume that |a| = pi*py® =+ pim , where p; is a prime divisor of a,
and r; € Nfor all i € {1,2,...,n}.

Since pi'py? -+ - pin = |a| € J, p; € J for some i € {1,2,...,n}, by the assumption.
Thus (p;,x) ~C J C Zlz]. By Theorem 2.5, (p;,;x) is not a cancellation ideal
of Z[z]. Since J is a cancellation ideal of Z[z] and (p;, z) is a maximal ideal in

Zlz), J = Zlx]. O
The following two examples give us for the motivation of Theorem 3.2.

Example. Let J be a cancellation ideal belonging to ideal (2, z?). We claim that

J = Z|x].
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Let I = (2,2?%). Since I is not a cancellation ideal of Z[x], I & J. Since 22 € I,
there exists g(z) = a+bx € J I for some a,b € Z.

Case 1: b is even.

Then a = a+bx —2max € J~ I where m = %, so a must be odd and a € J~\ 1.
Now J is an ideal of Z[x] contains 2 and the odd number a, so 1 € J. Thus
J = Z[x] as required.

Case 2: b is odd.

Subcase 2.1 : a is even.

Then bx € J and © = bx — (b — 1)z € J ~ [ since b — 1 € (2) C J. This implies
that the maximal ideal (2,z) is contained in J. Since (2, z) is not a cancellation
ideal of Z[z], J = Z]x].

Subcase 2.2: a is odd.

Thena—1,b—1€(2)and 1 +x=a+bxr —[(a—1)+ (b—1)z] € JI. Now
14z, 2?2 € Jand z = (1+x)z—2z* € J, we have that (2, z) C J. Hence J = Z[z].

Therefore, Z[x] is the only cancellation ideal of Z[x| belonging to ideal I.

Example. Let J be a cancellation ideal belonging to ideal (2, z3). We claim that
J = Zlx].

As in the previous example, there exists a polynomial a + bx + cx? € J . [
where a,b,c € Z. Since a + bx + cx® ¢ I, at least one of integers a,b, ¢ must be
odd.

Case 1: a is.even.

Then bx + cx®> € J ~. I and one of b or ¢ must be odd. Since 2 € J, we may
assume that b, ¢ € {0,1}

Subcase 1.1: b=1 and ¢ = 0.

Then x € J. Since (2, ) is a maximal ideal which is not a cancellation ideal,

(2,z) & J. Thus J = Z[z].
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Subcase 1.2: b=0 and c = 1.

Then 22 € J, so J is a cancellation ideal belonging to the ideal (2, z%). By the
previous example, J = Z|x].

Subcase 1.3: b=c=1

We have x + 22, 2 € J. Since

(x+2%,2% = (z+2°2° — (v + 2°))

x € J.

Thus (2,z) & J, so J = Z[z].

Case 2: a is odd.
We may assume that a =1 and b, c € {0,1}.
Subcase 2.1: b=c= 0.
Thus 1 = a +bx + ca® € J, s0 J = Zz].
Subcase 2.2: b =0 and ¢ = 1.

We have 1 + 2%, 23 €.J. Since

(1+2%2°%) = (1 +2%2° = (1+2%)1)
= (12t z),

x € J. Then (2,2) & J and we get J = Z[z].

Subcase 2.3: b=1 and ¢ = 0.
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We have 1+ z € J. Since (1 + x,z3) C J and

(1+z,2°) = (1+z,2° — (1+2)2°)

= (1 +x,x2),

z? € J. Thus (2,2%) C J, and we have J = Z[z] by the previous example.
Subcase 2.4: b=c=1.

We have 1 + z + 22 € J. Since

(14 1 +gipdiyo= (1 + 25 g (1 + 2 + 2°)x)
= (1+az+a° x+12°),
= (L+o+2°) = (z +2°),7 + 27
= (2% z°)

= 75}

J = Z[z].

Therefore, Z[x] is the only cancellation ideal of Z[x] belonging to I.

Theorem 3.2. Let m € N and J a cancellation ideal belonging to the ideal (2,x™).

Then J = Z[z].

Proof. We will prove the theorem by induction on m. Assume that J is a cancel-
lation ideal belonging to ideal (2,2™).

The case of m'= 1 is obtained from the fact that (2, z) is'a maximal ideal which
is not-a cancellation ideal of Z[z]. Next, letm >2. Suppose that the statement is
true for (2,2') for all [ € {1,2,...,m — 1}.

Let I = (2,2™). Since I is not a cancellation ideal of Z[z], I & J. Then there
exists f(z) € J\ I, say f(x) = iaixi , where a; € Z for alli € {0,1,...,n}.
If n > m, then let g(z) = ay,, —I—icziﬂaz + . Fa,xt™.

Thus h(z) := f(z) —2™g(x) € J NI and deg h(x) < m.
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If n < m,then let h(z) := f(z).

Assume that h(z) = by 1™ + by ox™ 2+ ... + bz + by, b; € Z for all
je{0,1,...,m—1}.

Since 2 € J, we may assume that b; € {0,1} for all

Jj €40,1,...,m — 1}. Clearly, there exists p € {0,1,...,m — 1} such that b, # 0.
Let s = the number of nonzero coefficients of h(x).

Case 1l: s = m.

Then 2™ — 1= (z — 1)(a™ ' +2" 2+ . ta+1)=(r—1h(z) € J

Since 2™ — 1€ Jand 2™ € J, 1 = 2™ — (™ — 1) € J. Then J = Z][z].

Case 2: s = 1.

That is, there exists £ € {0,1,...,m — 1} such that by = 1 and b; = 0 for all
j€40,1,....m— 1} ~{k}.

If k=0, then 1 = h(z) € J, so J = Zx].

f1<k<m-—1, h(z)=b"=2" so (2,2%) C J. By induction hypothesis,

J =7z

Case 3: 1 < s<m.

Let r = deg h(x). Since 2™ € J and 2™ "h(z) € J, hy(z) == 2™ "h(x) —a™ € J.
Let d; be the number of nonzero terms of hy(z).

If d, = 1, then hy(x) = 2 for some 4; € {1,...,m — 1} . Thus (2,2) C J, so
J = Z|x], by-induction hypothesis.

If di > 1, let ny = deg hy(x). Since 2™ € J and 2™ " hy(x) € J, hao(x) =
™ ™Mpy(x) — 2™ € J. Thus the number of nonzero terms of ho(z) is less than the
number of nonzero terms of hy(x).

Let dy be the number of nonzero terms of hy(z).

Ifdy = 1,then hy(z) = 2 for some iy € {1,...,m — 1}. Thus (2,22) C J, so

J = Zz] , by induction hypothesis.
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Continue this process, there exists ¢ € N such that hy(z) = 2 € J for some
i € {1,..,m — 1} . Thus (2,2") C J , so J = Z[x], by induction hypothesis.

Therefore, J = Z[z] for all m € N. O
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