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Chapter 1
Introduction

Recent observations suggest that the universe is currently expanding with
acceleration. So the universe is dominated by an energy component with negative
pressure at present [1]. Since this component has no effect on the dynamics of
galaixes and does not cluster, its gravitational interactions with ordinary mat-
ter should be weak. This energy component may be called dark energy [2] due
to its nonluminous nature and it cannot be observed directly. Dark energy is
not like dark matter because dark matter affects the dynamics of galaxies. A
simple model for the dark energy is vacuum energy, which in the theory of gen-
eral relativity, is equivalent to the cosmological constant. The value of the dark
energy density is very small compared with the theoretical value from cosmolog-
ical constant model. The problem of how to obtain the observed value of the
dark energy is known as the cosmological constant problem [3]. There are many
ideas for solving the cosmological constant problem, for examples, the idea of
time dependent cosmological “constant”, and the idea in which the smallness of
the cosmological constant arises from spontaneous symmetry breaking have been
proposed as solutions to the problem. But these ideas have some problems which
will be discussed in-Section 1.3.

A good candidate for the solution of the cosmological constant problem
is quintessence. Quintessence is the name given to models where the dark energy
component of the universe is due to an inhomogeneous field which evolves in
its self-interaction potential, it cannot be perfectly homogeneous because a time
varying homogeneous component would be inconsistent with the equivalence prin-

ciple [4]. However, the inhomogeneous part of quintessence is generally treated



as a small perturbation. Since this perturbation component tends to decay in-
side the horizon [5] while the universe is in the backgound, (radiation, matter),
dominated era, the energy density of the inhomogeneous part can be neglected
when the evolution of the universe is considered. When the cosmic microwave
background (CMB) anisotropy is studied the inhomogeneous part of quintessence
has to be taken into account [4].

Quintessence models with suitable potentials have tracking behaviour.
With this behaviour the final result of quintessence’s evolution is the same for a
wide range of initial conditions. Sometimes, the quintessence field for model with
the tracking behaviour is called tracker field [6]. Note that some authors use the
word “tracker” to refer to quintessence whose energy density decreases with the
same rate as that of the background during the background dominated epoch,
but in this thesis this word is not used in this sense. The evolution of tracker field
depends only on the parameters of its potential. So the correct value of the dark
energy density can be obtained by adjusting the values of the parameters. In
the cases where the parameters arise naturally from particle physics models, the
fine tuning problem is less severe than the fine tuning problem in cosmological
constant model. Although dark energy is dominant at present, but its density
is of the same order as matter energy density. Since the two energy components
decrease with different rates as the universe evolves, the initial conditions of the
dark energy must be set carefully to give an appropriate present value of the
dark energy.  This is the coincidence problem [6], and since. tracker quintessence
is not sensitive to the initial conditions this problem is avoided. In this thesis,
quintessence models are compared and discussed.

The organization of this thesis is as follows. In Section 1.1 some impor-

tant ideas and equations in cosmology are introduced. The observational results



and the cosmological constant problem are discussed in Sections 1.2 and 1.3 re-
spectively. The evolution of the quintessence field and the tracking behaviour
of quintessence are discussed in Chapter 2. A selection of quintessence models
are described and compared in Chapters 3 and 4 respectively. The conclusion is

made in Chapter 5.

1.1 Introduction to some ideas of cosmology

The Friedmann equations which describe the evolution of the universe is derived
in this section. The spacetime geometry is described by the metric tensor , which

takes the form of the Robertson-Walker metric [7]:

dr?
1= Fkr2

ds® = dt* — a®(t) { + 7%df? + r* sin’ 9d¢>2} : (1.1)

where a(t) is the scale factor, k is the topological curvature which gives the
spacetime geometry. The Robertson-Walker metric follows from the Cosmological
Principle which assumes that the spacetime of the universe is homogeneous and
isotropic.

The three possible geometries of spacetime, £ > 0, k = 0 and £ < 0 are
shown in Fig. 1.1. Eq. (1.1) shows that the spatial part of the universe can expand
or contract if the scale factor respectively increases or decreases with time. So the
evolution of the spatial part of the universe is given by the time dependence of the
scale factor as governed by the Friedmann equations. The Friedmann equations
can be derived from Einstein equation by introducing appropriate model for the
matter and energy in the universe and using the Robertson-Walker metric tensor
to calculate the Ricci tensor which represents spacetime curvature. So before the
Friedmann equations are derived the Ricci tensor is calculated and the model

of matter and energy for the universe is studied. For the Ricci tensor, first the



k>0 k=0 k<0

Figure 1.1: The three possible geometries of spacetime.

Riemann tensor must be calculated from the Christoffel symbols. The Christoffel

symbols are given in terms of the metric tensor by [7]

o 1 a
W. 5 59 P(0uGup + OvGpu — OpGpuw)- (1.2)

Using the Robertson-Walker metric for the metric tensor a sample calculation for

the Christoffel symbol is shown below:

1 aa
) = 590p(—3pg11) =12 (1.3)

and the non-zero components of the Christoffel symbols are obtained [7]

aa
1— kr?’

11O A GA D2 LESHSEN TR o~
FUI_FIO_FQO_FOQ_FO3_F30_

1Y, = aar?, I, = aar?sin® 0,

0 _
F11_

)

> &

Y

I, = —r(1—kr?); i = —r(l— kr?)sin®
F%2 — F%1 L F?a - Fgl = %7
I3, = —sinflcosf, I5; =13, =coth. (1.4)
The Riemann tensor can now be calculated using the relation [7]

R = 0,10, — 0,1, + rgxrgg — rﬁArfw. (1.5)



The Ricci tensor is obtained by contracting two indices of the Riemann tensor
R, = R0, (1.6)

and by contracting the Ricci tensor with the metric tensor the Ricci scalar is
obtained

R=¢"R,,. (1.7)

The explicit calculation of Ryy is shown below. First using (1.5) to calculate
ROO’OO’)

ROO’OU’ = aﬂrga 7 a(TFgU <t FgAPz)T\U - FSAFU)\U‘ (18)

For the Riemann tensor components we have

ad + a* a?
R0 =0 , Rl = N
000 ; e P e e
R0 = r%(ad + ) —r?a®, , Rsps = r(ad + @*)sin® 0 — r?a*sin® 0, (1.9)
and by lowering the index «

) r— gOaRaUOtr; (110)

and contracting the index o we obtain

ago d

ROO =) ROU’OU’ = —35 (111)

The other non-zero components of the Ricci tensor are

aii + 2a® + 2k
Ry = ——
H T—Fkrz 7

Ryy = r(ai 4 2a? + 2k),

Rzz = r*(ad + 2a* + 2k)sin® 0, (1.12)
and the Ricci scalar is given by

6, . .
Rzﬁ(aa+a2+k). (1.13)



Matter and radiation in the universe can be described by perfect fluid which is

isotropic in its rest frame. The energy-momentum tensor for a perfect fluid is [7]

T = ( p 0 ) (1.14)

0 —g"p
where p and p are the energy density and pressure of the perfect fluid respectively.

The trace of TH is

KN 7S (1.15)
From energy conservation we get

0 ="V, 0"y =0,T"+ DT =L T,
= —0up — 3pg — 3pg. (1.16)
a a
It is useful to introduce the equation of state which is a relation between the en-

ergy density and the pressure. The most general equation of state in a spacetime

with the Robertson-Walker metric can be written in a simple form as [7]:

p=wp, (1.17)

where w can be constant or time dependent.

Rewriting Eq. (1.16) by using Eq. (1.17)

P a
o~ R 1)— 1.18
fm 3w+ 1) (118)

it can be seen that for constant w, the relation between p and a is
pocla =3t (1.19)

The popular examples of perfect fluids are dust (sometimes called “matter”) and
radiation. Dust refers to nonrelativistic matter; examples of dust are ordinary

stars and galaxies. Because the velocity of dust is low (nonrelativistic matter),



the pressure due to dust in the universe is negligible in comparison with the
energy density of the dust and in the equation of state w=0. From Eq. (1.19) it

can be seen that the energy density of matter decreases as
poca® (1.20)

Examples of radiation are ordinary electromagnetic radiation and relativistic mat-

ter. Radiation has w = % and its energy density decays as
poxa . (1.21)

The universe whose energy density is mostly due to matter or radiation are known
respectively as matter or radiation dominated universe.
Let us consider Einstein equation with a positive cosmological constant
A [7],
G, =8rGT,, — Agy., (1.22)

where G, is the Einstein tensor and G is Newton’s gravitational constant. The

effective energy-momentum tensor due to the cosmological constant term is

Ag
T — _ D 1.23
i 8tG ( )
Eq. (1.22) becomes
Gy =87G( Tt Thy)- (1.24)

It can be seen that the Einstein tensor does not vanish even in the vacuum where
T,, vanishes. So this equation implies that the cosmological constant is equivalent
to the vacuum energy. This vacuum energy is assumed to be a perfect fluid and

the trace of the energy-momentum tensor is given by

A
T = —p+3p = —4%. (1.25)



Then together with Eq. (1.23) the equation of state for the cosmological constant,
(1.26)

follows, showing that the cosmological constant has w = —1.
Now we are ready to derive Friedmann equations which are the dynam-
ical equations of cosmology. From Einstein equation [7] (in the absence of the

cosmological constant term),

1
Ry =87C (T,“, - 5Tgw> , (1.27)

where R, and T},, are respectively the Ricci and the energy-momentum tensor.

Using Egs. (1.4) and (1.12), Eq. (1.27) becomes

—3% — 47G(p + 3p), (1.28)
for ROU and
a e o
Ch oY 2= =urGlp - 1.2
“42(=) +2m=arGlo-p) (1.29)

for R;;. Using Eq. (1.28) to eliminate ? from Eq. (1.29), one obtains Friedmann
a

equations
a 4
- =—=1G 3 1.30
© = —nG(p+3p) (1.30)
and
ax: o 8 k
= 1=/ — 1.31
(a) 37er a? (1.31)

If the cosmological constant is not zero, Friedmann equations become

a 4 A
e —ng(p +3p) + 3 (1.32)
a2 8 k A
Y = Zrgp- L4 2 1.
<a> 30— E T3 (1.33)



To make contact with observations, the following parameters are introduced:

Hubble parameter: =2
a

Redshift parameter: z+1= o

a
8tG p
Density parameter: Q= = —
Yy P 312 = ),
2
where the subscript “o” refers to the present value and p. = —— is the critical

G

energy density. The Friedmann equation (1.33) can now be written as
1=Q - Qp+ Q) (1.34)

where

A
and QA = W (135)

Q= H?a?

From Eq. (1.33) it is seen that the universe will expand with acceleration if
w < —%. The universe with a positive cosmological constant falls in this class as
wp = —1.

In the standard cosmological model [8], the universe began with a big
bang followed by an inflationary epoch, a radiation dominated epoch and a matter
dominated epoch respectively. The universe expanded rapidly in the inflationary
epoch so the curvature (k) term, which depends on a=2, quickly became negligible

and universe became flat (k= 0).

1.2 Observational results

The observations which suggest that the universe is domimated by dark energy
and is now undergoing accelerated expansion are discussed in this section. Re-
sults from these observations give constraints on the cosmological constant and

quintessence.
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The age of the universe

The relation between the age of the universe and €2 is calculated below. The
Friedmann equation for a flat universe with a cosmological constant term can be

written as

G

(8) =59 1 ), (1.36)

where p,, and p, are, respectively, the matter and cosmological constant energy

density. From Eq. (1.19) it follows that

3
" o — ppm = (%) , (1.37)
om
pA = constant = p,, (1.38)

where the subscript “0” refers to the present value; this notation will be used

throughout this thesis.

Substituting Eqs. (1.38) and (1.37) into Eq. (1.36) one gets
a\ 2 387G a,\ >
<_> = Y%—a—"Pom (_> + Por | 5
a 3 a
a2 871G [ a \?2 o\ 3
B = 8 (e o)
a’O 3 a/o CL

2
— H? (Qm% o8 (3> > , (1.39)

o

where H, = o, Introducing the dimensionless variable r = g, Eq. (1.39) can
Ao Qo

be put in the form

x = ]_Io\/Qomxi1 47 QoAlQa

Vzdx
V Qom + QoAx?)

Letting u® = 23, then 2,/zdz = du and we obtain

= H,dt. (1.40)

2 du B
3 Vv Qom + QOAU2 B

H,dt (1.41)
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so that

to—1

2 . _ QA % . _ QA % a %
=2 L (20 e (22 ()] e
3Ho QoA o Qom o Qom Qo ( )

Setting ¢t = 0 when a = 0 and using the relation /z ++/1 + 2 = m the age

of the universe at persent time can be put in the form

2, 0 VO 1
= —In
SHA/Up2 \L— /)

where no explicit dependence on €2, appears. For the Einstein-de Sitter universe

to

(1.43)

Q,, =1 and 2, = 0, then the age of the universe is given by

2

t, = \
3H,

(1.44)

The experimental values of H, are between 50 and 100 km/sec/Mpc or between
5.1 x 107 and 1.02 x 107 '% year~!. So the age of the Einstein-de Sitter universe
is bounded by

6.5 Gyr < t, < 12.1 Gyr, (1.45)

these values are smaller than the age of the oldest stars (13-16 Gyr). However,

by including the cosmological constant with a value of 2, = 0.7 the range
9.4 Gyr < t, < 18 Gyr, (1.46)

which is now consistent with the age of the oldest stars, is obtained for the age of
the universe [9].. Note that if the cosmological constant is replaced by quintessence
with constant w, the age of universe will change very little for the same values of

the parameters H,; Q,, [10] but the calculations become more complicated.

Luminosity distance

Consider a light source of absolute luminosity L located at r and an

observer located at » = 0. Light emitted at time ¢ = ¢ is received by the observer
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at time t = t,, with ¢ and t, related by the equation (1 + z) = o) The

luminosity flux F' at the position of the observer is

L
= 1.47
4rds’ ( )
where dj, is the luminosity distance given by [7]
dp = ar(1+ 2), (1.48)

where the product ar is the physical distance, the factor (1 + z) results from the
photon redshift and the time dependence of a [7].

On a null radial geodesic, ds?> = 0 and that

dt dr
£ —— 1.49
/a(t) /\/1—147‘2 (1.49)
The integral on RHS of Eq. (1.49) gives
v sin }(VEkr)  fork >0
T for k=0 (1.50)

/ dr B
V1—kr? st /1 E ) for k<0

d
and using the relation = (14 2)H for the left-hand side of Eq. (1.49) we have

dt
dt dz
— = —. 1.51
/ a(t) / (1+z2)Ha (1.51)
By using Friedimann equation

H2 Qo 3 Qg 3(wdark+1)
m — Qom <;> + Qodark <;> ) (152)

where Q,qqrk is the density parameter of dark energy with w = wyerk, Eq. (1.51)

becomes

dz

/dt 1 / (1.53)
a(®)  Hoto ) \[Qun(1+ 2 + Qo1+ 2F i)
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From Eqs. (1.49), (1.50) and (1.53), one gets

i = sing [\f dz

i “"/ v/ om (L + 2)* + Qodark (1 + 2)3aerst1)

] , (1.54)

where sin; = sin for £ > 0 and sin; = sinh for £ < 0. The luminosity distance is

then given by

1 + z .
Slll]c

\/7/\/Q dz ] (1.55)

‘i— Qodark(l + Z) (waark+1)

The apparent magnitude (m) is related to dj, through the relation [9]
17 4 5logj, 2L 95 (1.56)
m=M + 5log;y —— :

where M is the absolute magnitude.
Using type Ia supernova as standard candles, the observed values of m,,
can be used to estimate the values of the parameters €2, and €24,,+ by maximizing

the function

X= H

The parameter wygq-x can then be estimated with additional data from CMB

27ml o;

exp (m;—f"’)?> . (1.57)

anistropy observations. The current values are [11,12]

Qom ~ 0.3 ) Qodark ~ 077

—1 < Wodark-<-—0.8 or. —1 < Wedark <.—0.6. (1.58)

Baryon density

In a flat universe with €2,, = 1, the mass fraction in baryon in cluster
is higher than the upper limit given by nucleosynthesis. The mass fraction can
agree with nucleosynthesis only if €, = 0.16 [9] (2,,, includes baryon and dark

matter). Moreover, studies of the structure formations suggest that €, = 0.2 [9].
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1.3 Cosmological constant problem

The cosmological constant problem and the basic idea of quintessence which is the
way for solving the cosmological constant problem are reviewed in this section.
The details of quintessence are discussed in the next two chapters.

From observations
Qodarlc ~ 0.7 or Podark = Poc- (159)

Consider Friedmann equation in the form

Poc = Pom T <Pom> =+ pA,

Aerr
87G’

= pPom+ (1.60)

where (p,m) is the vacuum expectation value of the matter energy density. From
Eq. (1.59) we get

3H, _
Podark =~ PoAcry =~ Poc ~ % ~ 10 i Gev4- (161)

In field theory (pom,) may arise from the zero-point energy of all the normal modes

of some field with mass m,

1 w i ke : A
o) = Br = 7/ Ak k24P g m? = = 1.62
pom) = 73 / 2~ 2(2m)% Jo TV = 5 (1.62)
where k. is cut-off wave number. In general relativity £, is of the order of Planck’s
mass. S0
BrG)=" ~, 5-a0 1ca 42 7 4
<pom> = W = ™ G =2 x 10 Gev g (163)

The above simple calculation shows that py,,, is very small compared with (po,)
and # must cancel with {p,,,) to better than 118 orders to give the very small
value of py,,,. This is known as the cosmological constant problem. In other

words, the cosmological constant problem is the problem of the unnaturally small
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value of py,,,. This problem may be solved by finding mechanisms or models that
can give rise to the small value of p,_,,.

Now we consider some ideas for the solution of the cosmological constant
problem. The first example was suggested by Zeldovich [13]. He assumed that

(pom) arises from quantum fluctuations, and to the zeroth order (p,;,) cancels

with # leaving only higher order terms. This leads to [3]
(p) =107 .GeV". (1.64)

It can be seen that this value is still far larger than the value of p,_,,.

The idea of spontaneous symmetry breaking has also been invoked. In the
theory in which the symmetry is spontaneously broken, the scalar field potential
takes the form

V=V, —i’d'é+ g(¢19)?, (1.65)
where p?2 > 0 and g > 0. The value of this potential at its minimum is
oA
o

4

The value of V, must be close to Z— to have the right value of pygerr. S0 in this
g

model the cosmological constant had large value at early epoch before the sym-

Vmin E 4 ‘/o i 7l <pom> = Podark- (166)

metry breaking. This is desirable because a large effective cosmological constant
in the early epoch will give rise to inflation.

There are no symmetry in our 4-dimensional world which gives rise to the
appropriate value of pygurr. But if the local supersymmetry is broken in higher
dimensions the appropriate value of pygqrr can be obtained in our 4-dimensional
world [14].

The idea that the cosmological constant is time dependent has also been
suggested as a way to solve the cosmological constant problem [9]. If the cosmo-

logical “constant” is time dependent, it can start with an appropriate initial value
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and decay to its correct present value. But a time dependent cosmological “con-
stant” is a smooth time varying object and is inconsistent with the equivalence
principle. Although the initial value of a time dependent cosmological “constant”
is not too small, but it must be set carefully and it is hard to explain its origin.

So the coincident problem persists.
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Chapter 2
The evolution of quintessence field

In this chapter, the field equation for quintessence in a flat universe is
derived. The solutions for the exponential and negetive power law potentials
are found. Quintessence with these potentials are studied because many particle
physics theories give rise to potentials of these forms. The solutions of the field
equations can also be obtained analytically so the evolution of the universe and
the quintessence field can be studied (in terms of the scale factor and energy
density) explicitly from the field solutions. With these solutions the evolution of
quintessence fields with similar potentials may be discussed qualitatively. The
quintessence with exponential and negative power law potentials are good exam-
ples for the study of the tracking behaviour of quintessence. It can be shown
explicitly that the field solutions converge to some common solution (a scaling
solution in this case) for a wide range of initial conditions. In the flat Robertson-
Walker universe which contains radiation, matter and quintessence, the evolution
of a(t) and p,(t) can be specified by w,(t) which is governed by the scalar field
potential [4]. So it is sufficient to study the evolution of the universe using scalar
field quintessence. From this point of view and the fact that the inhomogeneous
part of quintessence can be neglected when CMB anisotropy is not considered,
in this thesis and in many papers quintessence is assumed to be a homogeneous
scalar field. Quintessence’s equation of motion is derived in Section 2.1. The
solution of this equation when the quintessence’s kinetic energy is dominant is
shown in Section 2.2. Scaling solutions of quintessence with negative power law
and exponential potentals in background dominated universe are discussed in

Section 2.3 and 2.4 respectively. The basic ideas of tracker solution are discussed
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in Section 2.5.

2.1 Homogeneous scalar field in a flat universe

A flat universe containing a perfect fluid with energy density p, and pressure p,

plus a scalar field ¢ with potential V' (¢) satisfies the equation

81G

H* = ~5 (Pt ps), (2.1)

where py is the energy density of the field. Introducing the variable m through

m = 3(w + 1), the equation of state will become p = (% — 1)p and from the

conservation of energy p, decreases as
pyoed ™. (2.2)

The value of m will be 3 or 4 if p, is respectively due to radiation or matter
energy density.

The Lagrangian density of quintessence field is

L= "NV =V(9), 23)

where V, is the covariant derivative in general relativity [7]. From the Euler-

Lagrange equation:

oV oL
2 Ly
09 Fo(Vud)
= Vu(g™0,9),

T gwj[auaud) - qua)\d)]

Using the condition that ¢ is homogeneous (space independent), we obtain

ov

96 (00)*¢ — g™ T, 000

D
= ¢+3E¢’ (2.4)
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which is the required field equation of motion.
Next, let us calculate the energy density and pressure of this field. From

the energy-momentum tensor [15],

oL
wo vy
g EWAV¢ gL
= VEV'G - gL, (2.5)

the field energy density, the 00-component of T is given by:

T =g %(v%v%& — V'¢Vi0) + V()

- %& +V(9). (2.6)

If this field is assumed to be a perfect fluid, its energy momentum tensor can

written as

™ = ( ’Ef 0 ) . (2.7)

—gijp¢
From Eq. (2.5) we get

Ti = §¢di¢p— g" [§(a°¢ao¢ — 0'$0;0) — V(¢)}

(4
s {5V 28)
Note that V# = 0* when it acts on a scalar. So the pressure of the quintessence
field is
¢')2
o=y =V (9). (2.9)

Using the equation of state p= wp, the relations among wy, @? and V' are given

by
éz
T =1+ wy, (2.10)
Po
ELA We- (2.11)

P¢
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If wy is constant, energy conservation suggests that
ps o< a3 @t o g7, (2.12)

The field solution which gives this relation is called the scaling solution. From

Eq. (2.6), the time derivative of p, is

OV

p'¢,:q's¢5+¢a¢. (2.13)

Multiplying both sides of the field equation by ¢ and using the above equation,
we obtain

ps = —3HJ’. (2.14)
If py decreases as Eq. (2.12), we get

a

—ppn— = —3H¢?, (2.15)
a
or
12
2
e (2.16)
py— 6

This equation shows that the power law behaviour of p, follows from the fix ratio
between the kinetic and the total energy. The upper limit of n is 6 and corresponds
to kinetic energy domination, and the lower limit of n is 0 and corresponds to
potential enengy domination. At the lower limit of n, p; becomes constant, so

the quintessence field behaves as the cosmological constant.

2.2 - Kinetic energy dominated epoch

In some quintessence models (i.e., the models which connect quintessence to in-
flation [16]) or in some period of quintessence evolution, the quintessence kinetic
energy can dominate the energy of the universe. The solution of the field equation

for which the kinetic energy dominates is discussed briefly here for completeness.
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If the kinetic energy dominates the field equation and Friedmann equation will

become
¢+ 3H¢ =0,
H2 _ 87TG <1¢)2>
3 2 '

Let u = ¢, then Eq. (2.17) becomes

U a
— = =-3-.
u a
So
= ocas.

Substituting ¢ from Eq. (2.20) into Eq. (2.18), we obtain
H? = (9)2 x a8
a )
a*da o dt,
i\
T o' 0.3k
Then the field solution is
- 1
¢ X ;a
¢ o In(t).
The field solution can be written in terms of a as

¢ o< 31n(a).

The field energy density decreases as
12
6

po X 5 xa.

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

This result is the same as that in the previous section. Note that the variational

constant of the above relations can be calculated by some conditions which is not

discussed here.
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2.3 Quintessence with negative power law po-
tential

Standard cosmological model suggests that the universe is radiation dominated
after inflation. After the radiation dominated epoch, the universe becomes matter
dominated. So the field equation with background, (radiation,matter), dominance
should be solved first. In the background dominated epoch, Friedmann equation
(2.1) becomes

8tG

H? = — P (2.25)

From energy conservation, Eq. (2.2), the Hubble parameter can be written as

a b
L4 TR 2.26
= X a ( )

Then the scale factor increases as

a? o t,
a = Atm (2.27)

It is easy to see that

o
i o — (— = 1) tm 2, (2.28)
m \m

Since the universe will expand with accelelation (@ > 0) if m < 2, the universe
decelerates in the background dominated epoch because m = 4 and m = 3 for
radiation and matter respectively.

The background density decreases with time as
pyp o< t72, (2.29)
By using relation (2.27), the Hubble parameter can be written as

g _ 2 (2.30)



Substituting Eq. (2.30) into the field equation, we obtain

6 . 0V
— — =0.
¢+ mtq5 * 0p
a+4
Ifv= e [5,17], the above equation will become

6 . Aa+4

¢+%¢_a¢a+l =0.

23

(2.31)

(2.32)

The solution of this equation can be written in the form ¢ = btP. Substituting

this trial solution into Eq. (2.32), we get

- 6 M Aa+4
bp(p F> 1)t + Ebpt = QW.
This equation can be satisfied if
' p e 2 = —p(Ol 8 1)7

6 Ao+
bp(p—1 —bp = .
p(p=—1) +—bp e

Then
2

a+2’

L (gl T
a+2\m o+2

From the definition of the field energy density, we get

p:

12

Po =5 +V o 2P o PP o g
So
mao
" mp = 1) a+2

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

The parameter w, can be calculated by using the definitions of n and m as

awp — 2

Wo = a+2

(2.40)
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From Eq. (2.39), we see that
9 o g™ x i, (2.41)
Pb
This shows that p, increases in comparison with p, because ps decreases slower
than py. So there is some value of a, say, a., which gives p, = p,. Although Eq.

(2.41) is derived from the assumsion ps < pp, but if this equation is assumed to

be valid approximately for p, < py, the scale factor a, will satisfy

2m
a\ at+z
Py (—) S (2.42)
Pb Qe
If the universe evolves until @ > a., it will enter the quintessence dominated epoch
and the field will not have a scaling solution. From observations, we know that

Poo
Pob

~ 2.3. (2.43)

Qo
ac) -

This together with Eq. (2.42) imply that a, ~ a.. Note that generally log,, (

Qo

2 and log;y (—) = 30 [12]; a,4q is a scale factor at the beginning of the radiation

rad

epoch.

It is convenient to introduce the rescaled time variable t',
1
1. = il (2.44)

for the discussion of the tracking behaviour of the scaling solution of the field

equation. With this variable, Eq. (2.32) becomes

G

; 1
¢+mt’¢_

¢o¢+1

=0, (2.45)

“w» ”

where now the and “77” refer to the derivatives with respect to #'. The

solution of Eq. (2.45) is ¢ = V't”” where

yo [ (o) 240

a+2\m a+2
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By another change of variables [17]

t'=el ; w(l)= % (2.47)
where ¢, is the scaling solution, Eq. (2.45) becomes
2
. (% - a%) (1) + () = s = 0,
% (u”aﬁc + 2u' ¢, — u'Pe + %u'd)c) 4 (b;‘“ — (ugp)~@t) =,
u” + (an +%—1) u'+ aiz (%— ai2> (u—u ") = 0.(248)

Let v = u' then the second order differential equation, Eq. (2.48), becomes the

set of the first order equations

u = v,
4 6 2 6 o}
= - — —1)v— — — —uh). (249
v <a+2+m >U a—i—2<m a+2>(u B ) )
The fixed points of above equations are
_J(0,1) foreven o
(Ve e = { (0,£1) forodd a (2:50)

Eq. (2.47) shows that at the fixed point (0,1), the field solution is

o(I') = do(T). (2.51)

This means that quintessence. ¢ will evolve into-the scaling solution ¢. for a
wide range of initial conditions; this is the tracking behaviour of quintessence.

Linearizing Eq. (2.49) about the fixed point (0,1), we obtain

()= (s 09 ) (80) e
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where du = u — u,, v = v — v, ou' = u' —u,, §v' =o' —v; (uc,v.) being the

fixed point. The eigenvalues (A1) of Eq. (2.52) are

1

1 3 2 1 3 2 \? 6 Q 2
Ay = — — — — + (———— )—2(—— ) : 2.53
+ 2 m o+2 [2 m o+2 m o+ 2 ( )

The fixed point (0,1) will be stable if

6+m

6—m

-

< a. (2.54)

This relation is always satisfied, since a > 0 for negative power law potential.
This means that the scaling solution discussed above has a tracking behaviour
for all positive a.

Eq. (2.42) shows that if ¢ > a., the universe will be in the quintessence
field dominated epoch. In this epoch, the field is assumed to be slowly rolling

down its potential (qﬁ < b #? < V7). So the Friedmann and field equations

become
N2 8nG [Aett
0= <9> AT , 2.55
a 3 o ( )
- a+4
3Ho = aces (2.56)
Substituting H from Eq. (2.55) into Eq. (2.56), we obtain
8TG\ 2 A5 Aot
3 (T) ¢—%d¢ = Oémdt, (257)
so that

ai4 (87:;G>§ \/% [(g)T © 1] = a(t—t,). (2.58)

So the field solution is

6= by [1 + O‘(O‘; 4 (8;:6,)5 \é?(t - to)] o (2.59)

From Eqgs. (2.55) and (2.59), the scale factor can now be written as

a o exp[ﬁtﬁ]. (2.60)



27

¢ ite exp|BtTa], (2.61)

a o<

4o 4 \?
“arops (i)
(4 +a)2ters \d+oa
showing that the universe will expand with acceleration if ¢ is large. The param-

eter w, can be calculated using Eq. (2.10)

12
Wy = ¢— — 1. (2.62)
P

From the slowly rolling condition (¢ < ¢, ¢2 < V)

-2
Wy R Qz; -1, (2.63)
and using Eq. (2.59), we get
a’= 3
N —— — 2.64
“¢ 9 3G (2.64)

Since it is not easy to estimate ¢,, then it is better to find another form of w,.

From Eq. (2.58), one may assume that

o2 /87GN\? 6
0 = at, 2.65
m( N (2.65)
! s
ala+4 3\ cp
b= ( = ) (8WG> At (2.66)
Since ¢.0 = Q—H%, then
J bt oV 1Choly d |
Yo N a2 \ 1,
1 27 e < 3 >5 1Y1§
T 3a+4\81G/) Vit
2 1
~ 29 (2.67)

z —1
3o+ 4 H,t,

Since t,H, can be approximated from the age of the universe, then the value of

wg may be estimated approximately.
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2.4 Quintessence with exponential potential

As in the previous section, we start the dissussion with the background dominated

epoch. In this epoch the field equation and Friedmann equation are

ov

$+3Hqﬁ+% =0, (2.68)
L, (a\2 | 8rG
H? = (g) p ”Tp,,. (2.69)

Eq. (2.69) can be solved using Eq. (2.2) and we obtain

; 2
a octing pp 7% H=—. (2.70)
mt

If the potential is exponential [5,18-20] (V = Ve *; k = \V/87G,), Eq. (2.68)

will become

¢+ 3Hy— kV =0. (2.71)

A field solution ¢ of eq. (2.71) of the form ¢ = ¢In(bt) will give rise to a relation

ps = a~". Substituting ¢ = cIn(bt) into Eq. (2.71), we obtain

c 6c
== — =Vik(bt) . 2.72
S = V(o (2.72)
Eq. (2.72) is satisfied when
L2
=
2 (6 ~3
b = == 1 . 2.73
i G 1Y) 273

For this field solution, the field energy density decreases as

12
po =5 +Vx 2. (2.74)

This has the same time dependence as py so that

- constant, (2.75)

P¢
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and it follows that

Wy = Wep- (276)

The constant ratio ps/p, implies that the density parameter of field ¢ which is

defined by
po _ pe8TG
Q, =5 2.77
¢ pc 3H2 ( )
is also constant. From Eqs. (2.72) and (2.73), V is given by
2 6
= o | el 2.78
- 12k2 (m ) : (2.78)
and py is given by
1/2\?2 2 6
= Irs BT W 2.79
Vi B <kt> T e (m ) (279)
Then density parameter of the field has the simple form
87G [1 £ 2\? 2 6
QF — i Lueiie .1 2.80
? 3H? [2 (kz‘) T e (m )] (2:80)
which can be further simplified using H from Eq. (2.70) to give
m m

In this case, we see that there can be no field dominated epoch for constant A
as the limit p, > py has been used for the Friedmann equation (Eq. (2.69)).
This limit is consistent with the standard model for nucleosynthesis where in the
earlier nucleosynthsis phase, the value (2, ~ 0.15 is expected. So without time
dependence, €24 cannot satisfy the observational condition {2, ~ 0.7 today. We
will discuss this later.

Next, let us consider the limit py > p, with the field slowly rolling down

its potential. The field equation and Friedmann equation now become

3Hp = kV,e %, (2.82)
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817G
H? = ”Tvce—’w. (2.83)

Solving for the field by substituting H from Eq. (2.83) into Eq. (2.82) and

integrating, we obtain

3 (?) T Ve S d = kVe s (2.84)
which gives
2 |k BA2
DEGNSN LA V| . 2,
P, n[G (87rG> v (2.85)

Using this field solution ¢ in Eq. (2.83), the Hubble parameter is obtained

¥/ ?ch (%)2 Vclt2
J % (2.86)
which implies that the scale factor increases as
a o £32. (2.87)
From the above equation, we gef
— % <% = 1) 2, (2.88)

Like Eq. (2.28), the universe will expand with accelelation if \> < 2 and the
accelelation rate will increases if A < 1.
With the field solution; Eq. (2.85), it is seen that the field energy density
decreases as _
2

po="5 +V i 2 o aV. (2.89)

Recalling the discussion about the limit of n after Eq. (2.16), we get

2? < 6. (2.90)
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In this field dominated case, a small increase in the value of p, will lead to
an increase in the coefficient of the damping term of the field equation (2.71)
because H? o py. It follows that as quintessence roles down its potential, the
rate of increase of ¢ will be lowered with increasing p,. This leads to a lower
value of n = 2‘%, and py will decrease with a slower rate (i.e., p, = NP
with A> > D > 0). For \> < m, p, will decrease slower than p,, so the field
energy always dominates. For A\* > m, p, will decrease faster than p, and the
background energy will eventually dominate. This rough consideration suggests

that the solution (2.73) for the background dominated epoch can exist if A\? > m.

Next the stabillity of the field solution will be discussed. From

d /a . a
A EER (291)

the Friedmann equations, Eqs. (1.30) and (1.31), give

H = —45G (pp+ o + py + py)

= 47 G (py+ o+ 0%) (2.92)

Introducing new variables

VES - VEVV

0= ; == . 2.93
g Y= am (2.93)
where kK = 87 (G, it is easy to see that
= Oz :H—l% 4 Vi f_d)_H
dlna ot HV6\H ' H?)’
4 VH
7N = VE — \/_2 Y (2.94)
HV3\2vVH — H

Substituting ¢ from Eq. (2.71) and H from BEq. (2.92) into Eq. (2.94), we get

/ K . MKV K . 3
A \/\/6;[<—3¢+ \é[_ +ﬁ[¢(ﬂb+pb)+¢]>

3 3 3 3
= —3z+ )\\/;yZ + 577 - §x37 — ixyZV + 32, (2.95)
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where v = 1 + w. Since V = g—v(ﬁ, then

¢
r \/E _¢)‘\/E\/v K 12
y = ﬁH( VT VP + VT
3 3 3 , 3 . )
= /2 Sy — 2 _2 . 2.
\@xy/\+27y ST = 57y + 38y (2.96)

The fixed points of above set of equations are [18]

(5 ) = (0,0), (ELO) (o125 o [Be-a)) e

These fixed points correspond to no-field, kinetic energy dominated, scalar field
dominated and background energy dominated cases respectively.

The stability of these fixed points can be studied by linearizing Eqs. (2.95)
and (2.96) as follows:

= (0 —x) = =3(0x—x.)+ )\\/g(éy — Ye)® + ;(&v — Ze)Y

3 3
—5(527 — gL 5(5$ —2.)(6y — yo)*y + 3(6x — z,)?

3 9 3
= —36x +9z26x + 575:5 = 53527(% — inyy(Sx + MW6y,.0y

, , ) )
Yy = (6y - yc) = _\/;(51‘ i xc) (6y = yc))‘ - 5’7(6y b yc)
3 3
_57(51' - xc)2(5y - yc) - 57(5y - yc)3
+3(6I | xc)2(5y F yc)

3 3
= —)\\/;ycéx + 6y x0T — 3T Y0 — )\\/;xcéy + 3226y

9

3 3
by — Zva? — Za?s 2.99
R 1Y SN 5 7Y 0Y, (2.99)

where 0r = x — z., 0y = y — y., 02’ = 2' — 2!, and 0y’ = y' — y.. The above

equations can be written in a matrix form as

( ‘;“; ) =M ( g‘; ) . (2.100)
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where

Mo— [ T30+ dy —Swy— v A6y — 3z
—/\\/gyc + 6yee — 3Teyey —A\/gxc + 322 + 3y — 3ya? — Syy2

The eigenvalues e 5 of M are [18]:

1. For the no-field case ((z,y.) = (0,0)):

3 3
ep = —5(2 =)y e = 37 (2.101)

Since 0 <~ < 2, then this fixed point is a saddle point.

2. For the kinetic energy dominated case ((x.,v.) = (£1,0)):

€ = \/g(\/6¢ A); e =3(2= ). (2.102)

The fixed point (1,0) will be a saddle point if A > /6 and it will be an
unstable node if A < /6. The point (—1,0) will be a saddle point if A <
—+/6 and it will be an unstable node if A > —/6.

3. For the scalar field dominated case ((z.,y.) = (%, V1—22)):
e — ") (2.103)

We see from Eq. (2.90) that A\* < 6, so this fixed point will be a stable
node if A2 < 3v, and it will'be a saddle point if A> > 3~. This agrees with

the rough discussion above.

4. For the background dominated case ((z., y.) = (\/37 [2%(2 - 7)]%)):

€1y = 329 1+ (1 - %)1 . (2.104)

This fixed point will be a stable node if 37 < A\? < 2492,/9y — 2 and it will
be a stable spiral if A2 > 24~2,/9y — 2.
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2.5 Basic ideas of tracker solution

The conditions for the tracking behavior [6] will be derived after a brief introduc-

tion to some properties of the tracking behavior. First the field equation

é+3Hp+V' =0, (2.105)

v b2
where V' = %, is rewritten in an appropriate form. Defining T as T' = CR one

gets

o v
4 3HV2T + — =0, 2.106
2T VR (2.106)

and from the relation py = 7'+ V' the equation becomes
T v

V2T
Tt Tty 4+ 3HV2T =0. (2.107)

.
==y,

So

Vv 3H~2T (1 181nx> ’ (2.108)

£ = A
V P 60Ilna

H2
where x = T'/V. Letting k = 871G, then p, = — and
K

Vv’ NG 19Ingz
v — i /1| NP L, |) . 2.109
Vv \/@ —|—w¢< +63lna> ( )

It was shown in Sections 2.3 and 2.4 that there are solutions to the field
equation that converge to the common solution which is a scaling solution. The
solutions which spend a long time converging are called tracker solutions. Al-
though the field solutions do not always converge to the tracker solutions, but if
the converging period is long enough a wide range of initial conditions will give
the same evolution of field. The field solution depends on the parameters of the
potential. A good example of the tracker solution is the field solution in Section
2.3. When the background energy dominates, the field solution converges to a

scaling solution. When the field energy dominates, although the field solution
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does not converge to a scaling solution but the tracking behaviour still exists.

The converging can occur if wy does not remain constant. Since wy = Ps slowly
Pe

varies between —1 and 1 through a long period of the universe evolution, then

one can assume that w, is nearly constant [4,21]. This is a property of the tracker

solution. From this property and 1 + wy ~ O(1), one gets

Vibids .

V”fﬁg

An important function for the tracker solution is the I' function defined as

@_'| T

(2.110)

F_V”V_ Wy — Wy _1+wb—2w¢ T - 2 T (2 111)
v T 2+ wy) 2l +wg) 643 1+ws(6+ )2 '
o0l 021
where = = 81—1112 and 7 = G(TIZ)CZ' The above equation shows that for wy, > wy,

the tracker solution will exist if I' > 1, and for w, < w, < 1/2(1+wy), the tracker
solution will exist if 1 — (1 —wp)/(6 + 2wy) < I' < 1. Note that the upper bound
of wy is required for the convergence of the field solutions to the tracker solution.

The other condition for the tracker solution is that [' is nearly constant, i.e.,
Ld(y—1)
H dt

< |I' = 1]. From Eq. (2.110), one gets

I 1d -1 I
‘ ( )‘23‘ < 1. (2.112)

H dt LV

K
For examples if V = prt BEq. (2.111) gives I' = 1+ o~ ! and the left hand side of
Eq. (2.112) is zero. So this potential gives wy < wp. If V ="K¢“, then wy > wy.
The general discussion on the convergence of field solutions to tracker solutions

is given in Ref. [6].
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Chapter 3
Quintessence models

Scalar field quintessence with exponential or negative power law poten-
tials can arise from particle physics theory. The behaviour of these fields are
discussed in this chapter. The details of particle physics theory are not discussed
here because they are beyond the scope of this thesis.

The negative power law quintessence which arises from dynamical su-
persymmetry breaking is discussed in Section 3.1. In Section 3.2, supergravity

quintessence which has the potential of the form V = is discussed.

Aat4 k¢2/2
e

¢
Quintessence with exponential potential and non-canonical kinetic term are dis-

cussed in Section 3.3.

3.1 Quintessence and Supersymmetric QCD

In this section we consider scalar field quintessence in which its negative power
law potential arises from non-perturbative gauge dynamics that lead to super-
symmetry breaking. The scalar field potential of supersymmetric QCD with N,
colors and Ny flavors is given by [22, 23]

Ny

- = 1 ,
V(5,6 ) =5 (1Bl + |FplP) =5 > (A2 D5)” (3.1)
=1 o
= VF + VD7
where ‘A% are the generators of the group SU(N.), F,, = Z—Z, Fai = Zgj (W

being the superpotential), DS = ¢T/ ¢, ¢ —acf 51, 1 (¢ey and acf being respectively

the scalar components of the chiral superfields ®.; and & with color index ¢



37

(1 <¢ < N.) and flavor index f (1 < f < Ny)),

by 7

- =f

f = ¢2f ) ¢ - ¢: )
¢ch ach

and Vr and Vp are respectively the F term and D term potential.
Supersymmetry will be preserved if V' = 0. Classically, one can set all
the superpotential couplings to zero [24], so supersymmetry remains unbroken
if there exists some field configurations which give a vanishing D term. These
field configurations are not isolated points but form a subspace. This subspace is

called the D-flat direction. From Ref. [25], the D-flat direction is given by

Qf(scf if 1<C<Nf

oy ¥

When supersymmetry is broken by the non-perturbative effect, the su-

perpotential which arises has the form [24-26]

1
A3Nc—Nf Ne—Ny

W?@ﬂﬂM—Mﬂﬁﬁmiﬂ

—c ! _—»f, —
Note that ¢ ! Gef = O Of.
From Eq. (3.2), the scalar potential is

2

=Y o |2
=f - A2e Y [lodet(d) 8 det ()
V(¢ 7¢f) = o =T Z EV ) — ) (34)
[det(§6)] 4+ [det(@)]t 4+ = || 09 9%
N.—N ) = o \ .
where a = ?}ch]\[ff and d = m Since g¢y can be dlagonahzeda on
diagolization, we get
_—»f — A2a
V(¢ =

7¢f) — : )
. f .
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“& 5 =
A2a Ny 1 .
_ (n33)" (nas)" > wa Jj] (35)

If the gss are real fields, the potential in the D flat direction will be

A2a Ny 1
V(ap) =200 —- (3.6)
(Hj Qj) i=1 &

The evolution of fields gys in the universe can be described by

4 . oV
gr +3Hgr + —| =0, (3.7)
99l p
where ﬁ is the derivative of V' which is evaluated along the D-flat direction.
b
From Eq. (3.5), the derivative of V' with respect to ¢ is
oV AZe 66 | 1 1
= = —do—r gy = HfM) > ==t —i=t
dpy T AT b i |0t T
(m69) ~(1109) - 70,

A2e 1 Nf{ 1 1 } 1 ]
(H d)d)) (H d)d)) ¢f { i=1 ¢z¢“ ) ¢Z ¢f¢ﬁ

So if the gss are real fields, we get

oV A2 11 ValV I
0o D (H] q]') qy i=1 4 qy

If the initial conditions for all the ¢ss are the same, one can see from Eqs. (3.7)

and (3.9) that
2a
dr +3Hdqy — QW =0, (3.10)
!



39

N.+ N . . .
where g = ﬁ The field ¢g; behaves as a single scalar field in the potential
A2a ¢ /

From Eqgs. (2.36) and (2.37), the coefficients of the field solution ¢ = bt?
in the background dominated epoch are

_1—7“

Peid2 (3.11)
_ dm(1 +r) W]
- (1 —=7)2[12 — m(1+1)] ] g (3.12)

N
where r = ﬁf If all the initial conditions for the ¢¢s are different, the evolution
C

of the fields are described by N; coupled differential equations. For example, if

Ny = 2, the field equations will become

¢, + 3Hq, — dqlL [2 + dq—g] =0
(q1q2)2dN, i ’

Go + 3HG, — dq27A2a [2 + dq—%] - 0. (3.13)
(q1G2)2dN.. e

As in the single field case, we look for the power law field solutions of the form
qp = cstht. (3.14)
In the background deminated epoch, we know from (2.70) that
H = %, a ot (3.15)

so the field equations in this epoch are

6 A2a 1 Ny 1 1
G5+ —dr = ——qa - —+—| =0. (3.16)
Substituting Eq. (3.14) into Eq. (3.16), we obtain
5. 6 _2
crps(pr — D™+ —pyest! (3.17)
A2a 1 Nf 1 1
- 2d) + =0. (3.18)
(11,7 Cj)4d #1431, vy cptP! [ = s C?‘thf]
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This equation gives
Ny Ny
pf—2 = —4dzpi —3pf = —4d2pi—pf—2pk(¢f). (319)
i=1 i=1
Since k # f, the above equation shows that p, = py for all possible values of k

and
pf — 2= —4depf — 3pf (320)
so that

1—7r
2

=i =p. (3.21)

Because all the ps are equal, Eq. (3.18) becomes

2a, Ny
o 1 [ L (3.22)

p(0™= Vit =S Mo 2% 5+

le

Taking the difference of the above equation with indices f and ¢, one obtains

2
CQ Cg

N
I J2 1 L1
7 < = f) QdZ— (3.23)

This equation can be satisfied if all the ¢ss are equal, so the subscripts for c¢ss

can be dropped, and Egs. (3.21) and (3.22) give

et 7

4m(1 +r)

4
= AL 3.24
I [(1—7")2[12—m(1+7")] ] (3:24)
From Egs. (3.6), (3.14) and (3.15), one sees that
Pqg; X % 4V x 1272 o @m0
Since pg, is of the form of a perfect fluid
1+r 1-7r
Wop = Wp—p— — —5 (3.25)

As in Section 2.3, one can show that Eq. (3.14) are the converging solutions of the

field equations (3.16). The parameter A can be estimated by using the conditions
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that the fields have tracking behaviour and start to dominate the universe energy

today. Both conditions can be satisfied if

V(qof) = Pocs V”(QOf) = Ho- (326)

From Eq. (3.6), one gets

So

A . - Gy
10 - : (3.27)
my my, 27“Ncmp

where m, = G2 is the Planck’s mass. From [22]

i 2B+r)(1+r)

°F (1+7)2 qgf,

we obtain

(qu)Q 334 n)(4r) 1 (3.28)

my, d(1=r)2 rN,

Eqgs. (3.27) and (3.28) show that the parameter A has a minimum value

”, 10—47
when N, — oo and fixed Ny. Since Roesy .~ 107120 it follows that
mp
-2
A ~ —. For fixed ., A increases as Ny increases from 1 to its maxinum value
NS
N.—1. If N, = 20 and Ny is close to N, the value of A will approximately be m,,.

Eq. (3.27) shows that 10! GeV < A < 10* GeV for 3 < N, < 20 and Ny =1, 2.
This range of A'is comparable with the particle energy scale (i.e., m,, ~ 10? GeV,
m, ~ 10" GeV). So the fine tuning problem in this case is less severe than the
fine tuning problem of the cosmological constant.

The existence of the superpotential in Eq. (3.3) requires the weak cou-
pling condition, this condition will be satisfied if A < ¢;. From Eqgs. (3.27) and
(3.28), one sees that A < ¢y for any N as long as N, < 20. Before supersymme-

try is broken by non-perturbative effect, the potential for gy vanishes. So these
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fields behave as free fields (¢;*> = constant) and ¢; increases with ¢. Then this
model can be used after the time ¢, that gives gs(t.) = A. The values of ¢; at
the present time which can be estimated by Eq. (3.28) are approximately m,.
Eq. (3.10) shows that if the initial conditions for all the grs are the same, g¢f
will behave as a single scalar field in a negative power law potential. From Egs.

(2.38) and (3.11), we obtain

JERA & 5
Wg =5 W T mg = Wy (3.29)

For different initial conditions of ¢, one sees from Eqs. (3.21), (3.24), (3.11) and
(3.12) that all fields gss have the same scaling solutions. These fields all evolve in
the same way and in the same manner as a single field at late time. But the time

which the fields ¢ys are on track depends on the ratio of fields’ initial values [22].

3.2 Supergravity and quintessence

Supergravity theories with suitable superpotential and Kéhler potential can give
rise to quintessence with appropriate potential. The properties of the superpo-
tential are discussed but the required Kahler potential is written down without
any discussion. In supergravity theory, the bosonic part of the Lagrangian can

be derived from the potential [23,27]
G = K +In (| W]2), (3.30)

where k = 877G, K is the Kahler potential and W is the superpotential. The

kinetic term is given by

K] 0" ¢ 0,0;, (3.31)
; ’K
where K/ = ——— . The scalar potential is
9606,
1 . .
V = =e“(G(G Y!G; - 3) + Vp, (3.32)
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where Vp > 0 is a D term potential as in Section 3.1.
If the form of the superpotential is the same as that in the previous

section,
AC As+3
~N — — = —
¢2de ¢S )

and the Kahler potential is flat (K = ¢¢*), we will obtain

s = 2dNy, (3.33)

. A?%® . 2s
G = koo +ln<m3¢4de>, Gy =Ko _Ea
2s 1
Gy = e GoPl= _ 3.34
0 o (G o= = (3.34)
If Vp is set to be zero, the scalar potential becomes
A0 Ab+4 (b ' 2)2
V:eW|¢bl 7 — (b+ Drlo]> + 20| , (3.35)

where b = 2s 4+ 2. The present value of ¢, ¢ ~ m,,, which can be estimated from
Eq. (3.26) will lead to a negative scalar potential as can be seen from Eq. (3.35)
above. This is a serious problem because it can lead to a negative energy density
for the universe, since the field ¢ is slowly rolling (p, ~ V') and the universe is
dominated by the field energy density at present time (po. & poy ~ V,). Generally,

one can see from Eq. (3.32) that the negative contribution to V' comes from the

3
term ——ZeG.

K
The negative value of V' can be avoided by imposing that the superpoten-

tial vanish and the Kahler potential is non-flat. Consider the supergravity model
with two types of fields, the quintessence field ¢ and. the matter fields (X, Y;).
The superpotential W and V) vanish when evaluated along the D-flat direction
which is assumed to be along X # 0,Y; = 0. The gauge symmetry is broken by

X # 0. If one of g—?f/ = Wy # 0 when evaluated along the flat direction of the D
i

term, one will get

Wi Wi
Gyf :HKyT—FWYT, GY:HKY—FWY,

(G yty = (KKyiy) (3.36)
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So the scalar potential can be written in the simple form

Wi N W
V o= eFr|W)?|(kKy + WY)(K/KYTY) ! (HKYT + W“) — 3}

= " (Kyty) Wy % (3.37)

An example of high energy physics model which gives rise to this model

is the string-inspired model with an anomalous U(1)x gauge symmetry [28,29],
when the gauge symmetry of this model factorises as G x U(1) x where G contains
the Standard Model gauge group and U(1)x is an anomalous abelian symmetry.
The fields of this model are split into three groups; X, Y and Y;. The D term

potential of this model is [27]

9 2
VD = 97)( (KXX r 2Kyy K ZgzKYlY; u C2> ) (338)

where gy is a U(1)y gauge coupling and ¢ is the Fayet-Iliopoulos term. The

Kahler potential of the effective supergravity is

(qq*)?
(T

(qq")"
m2n

K=XX"4 + Y ]?

: (3.39)

where m,. is an UV cutoff. In this model, the potential V vanishes along the
D-flat direction in which X = ¢,V = ¥; = 0. The U(1)x gauge symmetry is
broken by a non zero value of X along the D-flat direction. The superpotential
W can be written in the form of the Yukawa coupling as W = AX?Y +.... So
W =0 and Wy # 0 when evaluated along the D-flat direction. From Eq. (3.39),

we get
(9g")"
Kyy- = TEW (3.40)
(gq" )P
qu*|D = p2 22 (3.41)

where |p means evaluated along the D flat direction. Eq. (3.41) shows that for

q = ¢*, the kinetic term of ¢ will be canonical if we let

q— L and p=1 (3.42)

V2
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From Eqs. (3.37) and (3.41), we get

2n92n
kq2/2Me 2

Vv A2t
q n
A4+a
= /2, (3.43)
qa

where A*® = m@29)\2¢* o = 2n and e ~ 1. The parameter ) is required to be
approximately unity to avoid any fine-tuning of its value. The value of ¢ should
be larger than 10* GeV because U(1)x gauge symmetry should be broken above
the weak interaction scale. Since the universe energy is dominated by the energy
of the slowly rolling quintessence (p,. >~ V(g, = m,)), so for a > 11 it follows
that A > 10 GeV and m, > 10 GeV, and the string scale (m,), which is

calculated from the relation mng S

127], will have value in the appropriate
range (larger than 10' GeV). The fine tuning problem can thus be avoided if
o> 11.

Let us consider the behaviour of quintessence field when its potential is
given by Eq. (3.43). The field’s value is small compared with m, at a small
red shift, so the exponential factor of the potential can be expanded in terms of
polynomials with infinite degree, and the potential will become a positive power
law potential with arbitrary degree. The tracking behaviour due to negative-
power law potential is thus lost in this beginning stage. The tracking behaviour
occurs at the very end of the field’s evolution when ¢ ~ m,. The existence
of tracking behaviour has been checked numerically by Brax and Martin [27].
Since the exponential factor of the potential increases when the value of the field
increases, so the value of V/p, increases. This pushes w, towards the value —1
as discussed in Section 2.1. When the field is on track (¢ =~ m,), the value of w,

mainly depends on the exponential factor of the potential. So w, does not depend

on « as shown in Fig. 3.1. This is a very desirable property of this potential.



46

—0.2F
DA4F

06F

|'|Il.|i||.-|II|I||

~0.8F
—1. 0 [ gy f BANEINEN ]

Figure 3.1: w — « relation for the potential in Eq. (3.43)

3.3 Quintessence with non-canonical kinetic term

In Section 2.4, one sees that quintessence with exponential potential cannot satisfy
the constraints (1.58) from observation. But if its kinetic term is non-canonical,
its behaviour will change and the conditions (1.58) can be satistied. Quintessence
with non-canonical kinetic term can arise from supergravity theory [30].

Consider the Lagrangian of a scalar field with non-canonical kinetic term
1 J
L= 5(6H¢)2k2(¢) —e ?, (3.44)
where m,, = (87rG)’% has been set to unity. By the change of variables

x=K(¢), k(¢)= (3.45)

ErX
the Lagrangian can be put in the form

L= %(aﬂxf — e KT, (3.46)
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where K~ !(x) = ¢. If k(¢) is constant (= k), the above Lagrangian will become

L= %(aﬂxf — e Yk, (3.47)

The evolution of this field was discussed in Section 2.4.

It can be seen that the relation between the energy density of ¢ and y is
1
py = 5(avogb)%? e ?
1
= S0+ e = py. (3.48)

‘ 1
Then, from Section 2.4, for k* < — (with m = 3,4 for matter and radiation
m

respectively), the field energy density decreases as

Py X py x a”™, (3.49)
and

QU (g i K (3.50)
For k? > %, the universe is in the field dominated epoch and

< 1
Py X py o< a w¢:@—1. (3.51)

lv|H

Since the universe is dominated by the background energy at early time, so

1
k* < — and w, = 0 for constant k, because the ratio P is constant. Eq. (3.51)
m Pv

1
shows that w, can be close to —1 for k? > — in-the field dominated case. So k
m

1 1

should be smaller than —- at early time and larger than -~ at present time. An

example for k with this property is given by [31]

5(6) = Fpin + b(tanh(é — ¢1) tanh(ep — dy) + 1), (3.52)

where k,;, = 0.15, b = 0.25, ¢; = 40.0 and ¢ = 249.8.
The field and Friedmann equations are solved numerically and the cos-

mological evolution is shown in Fig. 3.2. As ¢ increases, the coefficient k(¢), as
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given by Eq. (3.52), remains almost constant at first (0 < ¢ < 50) and changes
abruptly from the large initial value of 0.65 to the intermediate value of 0.15 and
remains there (50 < ¢ < 250) before abruptly changing back to the large value

as shown in Fig. 3.3.

‘ -
1F v
I /
i
0.5 |t /
! /
0 LN _ j > s _
W‘P
I ™ Qr
_A %N Qm
L | I L L I I L L L L | L L L L L L L L L L
-20 -10 0

log,,a=-10g,,(1+2)

Figure 3.2: Cosmological evolution with quintessence field with k£ given by Eq.
(3.52)

K(o) [
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Figure 3.3: Two different £¢s which give the same qualitative evolution in Fig.
3.2.

From Figs. 3.2 and 3.3, one sees that during the initial period with large &,
1

the universe is field dominated and inflates because k* > — and wg — —1 in this
m

period. When k£ drops, the field accelerates because when k decreases the ratio
Ip)

of — =n =k ? increases (py x a~

2¢

-2 _ . . .
k"% > a™), so the universe enters the kinetic
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energy dominated epoch. As the universe evolves further, since the kinetic energy
density decays faster than the radiation density, the universe becomes radiation
dominated. Since pg is small in this epoch, the evolution of the universe follows
the standard cosmological model and the radiation dominated epoch is followed
by the matter dominated epoch. When k changes to a large value approximately
at the present time, the ratio pZ increases and wg gets close to —1, so the universe
becomes field dominated becafl)se py decreases slower than p, at this time. The
initial conditions for cosmological evolution in Fig. 3.2 are p;,; = 1, ¢ = 2 and
éﬁ = 0. The evolution gives 2,5, ~ 0.5 and w,y ~ —0.96. It is interesting to observe

that the same cosmological evolution as in Fig. 3.2 can be obtained without any

abrupt change of k. For example,

G (bl)Z, (3.53)

P2
where k,,;, = 0.1, ¢; = 42.5 and ¢5 = 160.0.

Let us consider the cosmic evolution for smooth function k& and smooth

evolution of ¢. If the validity of Eq. (3.50) with & = k(¢) is assumed, one gets

Ay = /mdk,
/2, = i (3.54)

dlna md_qﬁdlna'
From
3H? = p., (3.55)
one gets
920 3¢°
e . (3.56)
10 0
i ——=——,th
Since Tl 9lna’ en
dp | 6 [k2g?
dina ~ \| k2 [ 20, ] (3:57)
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By using the relation ¢ = (1 + We)Pg, ONE gets

dg 3
e[S+ )2 (3.58)

Substituting the above equation into Eq. (3.54), one gets

dy\/$2 dk Q
= Vm—1[3(1 =0 .
g mdd) 3(1 + wy) 12 (3.59)

In the case of matter domination (wg = 0), one gets

B _T1 Sy (3.60)
dé 33 dlna’ '

To preserve the standard nucleosynthesis and structure formation processes, (24
should be less than 0.2 during these periods. Since the univerese is field dominated
today, then €., > 0.5. The value of log,,(a) changes approximately 3 when the

universe evolves from the structure formation epoch to the present. So one gets

dk 1 dy/Q
P~ 2 =R oo (3.61)
dp ~ 3+/3 dlna

If the field in this case can be approximated by Eq. (2.73) (Because Eq. (3.50)

is assumed to be valid), one geis
Ap ~6Alna~6x3xInl0~41.4. (3.62)

By using the allowed values of ¢ and k in the structure formation period which
are 250 and 0.26 respectively, the present value of k£ as given by the lower limit
of the relation (3.61) is too small (k'~ 41.4 X 0.007 4 0.26 ~ 0.5 < 1/4/2) to
accelerate the universe, since k£ does not grow fast enough when ¢ increases.

Next consider the exponential form of k&,

k=eo, (3.63)
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which allows strong growth of k during cosmic evolution. From Eq. (3.45), one

gets
K = ae"5t. (3.64)
The canonical Lagrangian has the form
E o 1 a 2 a, Pp1.,—«
= 5( LX) — atef (3.65)

This is a well-known Lagrangian for negative power law quintessence. When «
is large, the growth rate of k with ¢ is slow and the approximation A¢ ~ Alna

can be used. One gets

ko —ki= Mk me™s e 1] & k(qﬁi)[(%)o‘ “ 1~ k(g)(2),  (3.66)

i a;
where k, and k; are the values of k£ evaluated, respectively, in the present and in
the past. If Ak = 2 for Alog,,(a) = 3, then through the whole evolution of the
universe (where Alog,,(a) & 30), Ak ~ 2'° ~ 1000. The initial value of k is not
too small and there is no fine tuning problem.

In the next chapter, one will see that a large value of a cannot accelerate
the universe today. The universe can expand with acceleration if « is small
(v < 6). By using the allowed value of k& = 0.26 and ¢ = 250 during the structure
formation period and setting o = 6, Eq. (3.63) gives ¢; = 258.1 and from Eq.
(3.66), one gets

k(0) = e 816 1070, (3.67)

So k which is given by Eq. (3.63) has the fine tuning problem because its value
at the early time (when ¢ ~ 0) is too small compared with m,, (=~ 1) which is the

particle physics mass scale at that time.
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Chapter 4
Comparison of quintessence models

The quintessence models discussed in Chapter 3 will be compared in Sec-
tion 4.1 by studying the existence of their scaling solutions and tracking be-
haviour. In Section 4.2, the values of w,y for each models will be compared. The
modifications and some particle physics problems of these quintessence models

are studied in Section 4.3.

4.1 The existence of scaling solution and track-
ing behaviour of quintessence

The existence of the scaling solution can be studied by using the relation between
V', © and (constant) wy [32], so this relation will first be derived.
From the energy conservation of quintessence field, if wy is constant and

the field behaves as a perfect fluid, the field energy density will decrease as
Py o arss (4.1)

This relation implies that the field solution is a scaling solution as discussed in
Chapters 2 and 3. If the universe contains quintessence and perfect fluid the

Friedmann equation Eq. (1.31) becomes

3w¢+1
i S H? (Qo¢, (“-) ¥ Qm“—> . (4.2)
a a
From Eqs. (2.11) and (4.1), one obtains
Vo _poy Vo _ <a>3(“’¢+1)

Qo

(4.3)

Viopy V
Another expression of a is required to eliminate a from Eq. (4.2), it is obtained

by finding the derivative with respect to t of the above equation and is given by

Vo

(4.4)

a - -1 V\ 3@, V!
() T
Ao 3((.0¢+1)

_ 2



53

where “ 7= 2 and “' 7= a%s' At present t =t, and ¢ = ¢,, and one gets

ot
L Y
Ao = ao¢o <_3(w¢ T 1)> 70 (45)

By dividing Eq. (4.4) by Eq. (4.5), one obtains

“_9 (gml v (4.6)
o ¢o VYO ‘/o,
The variable ¢ in Eq. (4.6) can be eliminated by using Eq. (2.10) which can be
written as
i 1 -
i - (&) VRN <K>2 (4‘7)
¢, ~\a Vo

Substituting Eq. (4.6) into Eq. (4.7), one gets

3wy +5
a Vv T B(wg+1) V!

Tk o\ e

and at present a = a, and ¢ = ¢,, and Eq. (4.2) becomes
3wyt
dﬁ:aﬂﬁ(9w<%> -+Qm%>:ayﬁ. (4.9)
a a

Using Eqs. (4.3) and (4.8), the Friedmann equation (4.2) can be written as

Swg+5 Bwg+1 %

V! V \ 8@stD \V4 m V'\ 3@etD
5 o | Qom = Qo e
v (%) ( () (7)) )

wgt2 2\ ?
_ (Q () T (1) ) . (4.10)
Next, we study the existence of scaling solutions and tracking behaviour for the
negative power law, exponential, and the negative power times exponential po-

a+4
" ). Using Eq.

@ 2a+1_ <%>a—w¢+—l <%>2a
(¢> —Q,, 5 + Qg 5 (4.11)

tentials. Consider first the negative power law potential (V =

(4.10), one gets
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It can be seen that the above equation cannot be satisfied by any value of o and
wg. But if the matter energy dominates, the above equation gives wy = —O%Z,
which agrees with the result in Section 2.3. When the field energy dominates, no
value of wy and « can satisfy Eq. (4.11). This implies that wg is not constant
because the scaling solution does not exist in this case. But from Section 2.5, one
sees that tracking behaviour still exists although the field energy dominates.

In the case of the exponential potential (V = e™*®), by using Eq. (4.10)
one gets

w¢+2

e~ H(@=tol = Qo FA T e 2k(6—00), (4.12)

om

For matter energy dominated case, Eq. (4.12) gives w, = 0. For field energy
dominated case, Eq. (4.12) can still be satisfied, but the value of w, cannot be
determined. Moreover, one can see that Eq. (4.12) can be satisfied for all values
of Qo and Q,y for which €, + Q,, = 1, but only the case of €,,, > €,4 and
2,4 = 1 gives stable field solutions as shown in Section 2.4. If the kinetic term of
the quintessence field is non-canonical, its potential can be written as V ~ e~ 5(®),

and the left-hand side of Eq. (4.12) becomes Iﬁ(,’(ﬁ))e*K(d’)*K(%). Because K is

not a linear function of ¢, the scaling solution does not exist in this case. The

tracker solution are studied by using Eqs. (2.111) and (2.112), from which one

gets
K"
i miysr "2
L S (4.14)
F(V’/V) K/Z(KIQ _ K”)

If K = k", k* = G", Eq. (4.13) gives T''< 1 and wyg > wy,. This value of
we cannot satisfy (or does not agree with) the condition from observation. If

K = —k¢™, Eqgs. (4.13) and (4.14) give

(n—1) dF:(n—l)(n—Q)—Q(n—l)ZZ_ nt7 (4.15)

F=1 R (2 +n(n— 1)K Gn— K"
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The above equation gives I' > 1 and |dI'| < 1 for large value of n or ¢. So this
potential can give wy, < wy, as desired and quintessence with this potential has
tracking behaviour for large n or ¢. If n is negative, Eq. (4.15) shows that the
condition for tracking behaviour can be satisfied if the value of ¢ is small. It can
be seen that for n = 2 the form of this potential is similar to the exponential factor
of the potential in Section 3.3. Eq. (4.15) shows that for n = 2 the condition
for tracking behaviour can be satisfied if the value of ¢ is large. Note that the
condition for tracker behaviour can be satisfied for all values of ¢ if n large. If
K =my¢? (¢ — ¢o)7, Bas. (4.13) and (4.14) will become

1—n)

r:1_( dp:(l—m(l—?n)—?(l—n)?_ L+7n

K (1—(1—n)K T nK

(4.16)

It is easy to see that the condition |dI'| < 1 for tracking behaviour can be satisfied
if ¢ is large. One can see that the kinetic coefficient k(¢) which is given by Eq.
(3.52) can lead to this type of potential if n. = 3 and k,,;, = 0. This means that
quintessence with this kinetic coefficient has tracking behaviour at large value of
¢. For K = +aln ¢, it can be seen that I' = 1 & o ! similar to the power law
potential case.
' : Aa+4 ko2 /2
Now we come to the third potential of the form V = ——e . By

using Eq. (4.10), one gets

w42

07 e w 2
(k‘(b2 — a>2 (%)2 2 R A (¢o> wotl m‘jﬂ—l)(& ¢3)
ko3 ¢ ¢
00\ kat)
+Q0p 5 (4.17)

It is easy to see that scaling solution dose not exist in this type of potential. But

from Eqgs. (2.111) and (2.112), one gets

B k¢? + a
ar = — 2kg(ko” + 30) <1 (4.19)

(k¢? — )?[k¢? + a + (k¢? — )?]
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if ¢ is large. So the field solution has tracking behaviour and wy < w,, for large
value of ¢. The above examples show that tracking behaviour may exist although

there are no scaling solution for the field equation.

4.2 The value of w,,

The values of w,, from the potentials discussed in the previous section are con-
a+4
—. In this case, the

sidered in this section. We begin with the potential V' =
field energy starts to dominate the universe energy near the present time. Then

the scaling solution may be used approximately and we may assume that

2
a+2

iy = (4.20)

The lower limit of w4 is —0.6 and occurs when o = 1. The value of w,, increases
as « increases. The lower limit of w,, is larger than observational value (w,4 <
—0.7). So this approximation is not valid. When the field energy dominates and

the slow rolling condition is applied, one obtains from Eq. (2.67)

e 1 1
Wog RS = —
T P =

(4.21)

One can see from Eq. (1.39) that it is not easy to estimate H,t,, because the
a2 a,\ 3o+

Qon (—) term in this equation becomes (2,4 (—) in this case. If the ap-
o a

proximate values of ¢, (~ 15 Gyr) and 50 < H, < 100 (km/sec/Mpc) are used,

the value of Hyt, becomes

15 x 10? 15 x 10°
TN = — . H, —— x 1.00 = 1.53. 4.22
0.77 9.8 % 107 x 0.50 < Hytp, < 9.8 x 107 x 1.00 93 ( )

For a =5, Eq. (4.21) becomes

—0.52 > wep > —0.76 . (4.23)

This value is near the value given in Ref. [6] (w4 ~ —0.56) if H, is near 0.5. For

other values of «, the value of w,, as given by Eq. (4.21) are not close to the
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value given in Ref. [6] and referred to by Ref. [27]. Note that the values of wg
from [6] and [27] are quite different. The relation between wy, and €, as given

by Ref. [6] are shown in Fig. 4.1.

0.0
02
-0.4
giﬁ
R * i
‘08 | T
4.0 ¢ -
- 0.8: 08 04 0.2
.Q_m

Figure 4.1: €2y, — woq relation for various .

This figure shows that the universe will expand with acceleration if o < 6.
From Eqgs. (2.27) and (2.29), the density parameter of quintessence with negative

power law potential increases as

Qgp x Po o =342 o 2752, (4.24)
Po

By using Eq. (2.39), we get
4
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If this equation is assumed to be valid through the universe evolution, we get
4
to\ o+2
o - o)

4
15 x 107\ =+
= 02x [—

= 0.2 x (1.5 x 10%) 7+, (4.26)

where €, (= 0.2) is the density parameter of quintessence during the time of
structure formation (¢ =~ t; &~ 10® year). This equation shows that quintessence
energy can dominate the universe energy (€2, > 0.5) at present (not before or
after) if @ > 19. So although quintessence with this potential can dominate the
universe energy today but it cannot accelerate the expansion of the universe.
Next we consider the exponential potential (V' = V.e *%). Since field

energy subdominates in the radiation dominated epoch and the ratio Po is con-

stant, then the field energy never dominates and wyy = wy, = 0. But if tflia kinetic
term of this quintessence field has non-canonical form, the value of w,s can be
lower than —0.7 which agrees with the observational data as shown in Section
3.3. Although the value of (2,4 which is given in Section 3.3 is lower than the
observational value (& 0.7), but by an appropriate change in the form of k(¢)
the value of €2,, can be made higher. The model of quintessence field with expo-
nential potential can be improved.in many ways to give better values of w,s and
4. This will be shown in the next section.

In the case of the potential V" = %ek&ﬂ, a good value of w,, (= —0.8)

is obtained and unlike the negative power potential, the w,s from this potential

does not depend on «. The relation between €2, and w,, is shown in Fig. 4.2.
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Figure 4.2; Q,,, — w,s relation for potential V' = faek‘zﬁ/?.

4.3 The modifications and problems of some quin-
tessence models

The modifications of quintessence models from Chapters 2 and 3 are discussed in
this section.

We start with the exponential potential, V = V,e~**. Although quintes-
sence with this potential cannot accommodate the present values of wyg and €2,
there are many ways to improve this model. For example, if quintessence couples

to the invisible matter as

T %2 ~ Ve "M Lo+ F(B) L, (4.27)

where ‘£, is the Lagrangian of the visible matter. (photon, baryons) and £; is

the Lagrangian of the invisible matter (non-baryonic dark matter). In the radi-

ation dominated epoch the invisible matter subdominates, so quintessence has a

Pos
pO’I"
the invibible matter dominates, and due to the presence of f(¢) the quintessence

scaling solution and the ratio is constant. In the matter dominated epoch



60

solution can deviate from the scaling solution. By a suitable choice of the form
of f(¢), the value of w,s can be lower than —0.7 [33].

As the next example, consider quintessence with power times exponential
potential V = V.(¢)e ¥ where V,(¢) has the general form (¢ + B)* + A [34].

From this potential, one gets

(e — 1) B2 = 2ka B! + k2V,)V,

I' =
(aBopo L —kV,)?

(4.28)

Since I' > 1 and I'' ~ constant for ¢ > 1, then quintessence with this potential has

tracking behaviour and its energy can dominate the universe energy at present.
a+4

¢o¢

the negative power law potential of quintessence can arise from supersymmetric

In the case of the potential V = , one can see from Section 3.2 that
QCD. In this model, the field value at the present time is close to the value
of Planck mass (¢, ~ m,) as can be seen from Eq. (3.28). For this reason,
some authors [27,35] suggest that the quintessence models should be based on
supergravity. So the supergravity correction of the model in Section 3.2 should

be considered. Eq. (3.35) shows that the scalar potential of supergravity theory
Aa+3

¢a

can have negative values when quintessence field takes its present value. This

which arises from the flat Kahler potential and the superpotential W =

problem can be solved by using an appropriate form of the Kahler potential. For

example, if the Kédhler potential is [35]

K =~ [in(/rq + V') (4.29)

where k = 871(G. The canonical kinetic term of the field ¢ can be obtained by

using the relation

1
Ks4(0,q70"q) = §(auq*3“Q),

J2Kpd's = 9. (4.30)
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Since
2[1 — In(\/kq + VKq")]
Kgq = Y ; (4.31)
k(G + q)
by setting § = ¢* one gets
R I MENC (4.32)
q= NG n Kq)|2. .

The scalar potential for this model can be obtained from the above Kahler po-

a+3
tential and the superpotential W = —— through
qa
In(2v/kq) « In(2y/kq) «
Gru= o=y~ - G s ———~ — —,
q q q q
_ 2¢°
(O A L (4.33)

1 —1n(2/kq)

2/3
Using the dimensionless field y as xy = (%\/Eq) Lo 1 — In(2y/kq), the scalar
potential for this model assumes the form

V o= 17 2@ 1o v —a)2v N1 - v — ) —
= " Vk [(L=x=a)2x )1l =x—a)-3],

qQa

= M*Y2x*+ (4da = 7) +2(a —1)Hexp[(1 — x)? — 2a(1 — x)], (4.34)

where M* = AS6+222+2a92a " The evolution of the field ¢ is not discussed here.
The evolution of this field is discussed in Ref. [35].
Let us consider the breaking of supersymmetry at the mass scale my, >

10" GeV [35]. Rewriting the scalar potential from Eq. (3.2) as

V = |F| - " 3:*|W %, (4.35)
a+3

¢a

symmetry breaking, because its value is very small compared with mg, at the

it can be seen that the superpotential W = cannot-be a source of super-
present time. A suitably modified superpotential is given by

A3+a

W =

+ gk, (4.36)

qa
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where mj3/, is the gravitino mass. This superpotential gives a correction

A3+a
oV ~

ms/2
K;Oé

+ m§/2/<f2, (4.37)
for ¢ ~ m,, to the potential in Eq. (4.34). This correction gives a large value
of V or p,y when the field takes its present value (¢ ~ m,). This does not agree
with the observational data which requires a very small value of p,,. This is a
serious problem in all supergravity models of quintessence [35]. This problem can
be avoided in many ways but a good way is building quintessence from string
theory [35,36].

Next consider the potential V' = %ek&ﬂ. Since this potential arises in

supergravity theory, when supersymmetry is broken, a large correction
oV ~ (’)(mg/Qﬁg_Q). (4.38)

will be given to the scalar potential and the same problem as in the previous

discussion exists in this case.
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Chapter 5
Conclusion

In this thesis, the basic ideas of quintessence are reviewed. Only the ho-
mogeneous part of scalar field quintessence is studied, because the energy density
of the inhomogeneous part is small and has no effect on the expansion rate of the
universe. Generally, quintessence is assumed to be a perfect fluid, so if p,/py = wy
is constant the energy density of quintessence will decrease as p, o< a 3@t The
behaviour of quintessence is characterized by its potential. The field solutions of
the typical quintessence with negative power law and exponential potentials are
derived. Both types of quintessence have scaling solutions and tracking behaviour.
The scaling solution of quintessence implies that pg oc a=3w@st1)_ For the expo-
nential potential the quintessence has two interesting stable solutions. The first
solution occurs when the universe is in the background dominated epoch. The
energy density of quintessence decreases with the same rate as the background
energy density in this case, so the ratio between p, and p, is constant. The sec-
ond stable solution occurs when the quintessence energy dominates the universe
energy. The energy density of quintessence decreases with slower rate than the
background energy density, so wg < wy in this case. From the standard cosmo-
logical model, pg < pp-in the radiation dominated epoch, so the energy density
of quintessence decreases with the same rate as the background energy density
and never dominate the universe energy. The universe cannot expand with ac-
celeration in this case. Quintessence with simple exponential potential cannot
satisfy the conditions, Eq. (1.58), from observations. For the negative power law
potential, the stable solution of quintessence occurs in the radiation dominated

epoch. The energy density of quintessence decreases slower than the background
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energy density for this solution, and the quintessence energy can dominate the
universe energy at the present time. The time of quintessence domination can
be estimated from the parameters of the potential. Although the final result of
quintessence evolution does not change for a wide range of the initial conditions
of ps, but if the initial value of Q4 (€5 < 0.2) is considered, the quintessence
energy will dominate the universe energy too early unless o > 18. For o« > 6 one
has w, > —1/3, so although this quintessence can dominate the universe energy
but it cannot lead to expansion with acceleration of the universe.

The negative power law potential quintessence can arise from supersym-
metric QCD. If the initial value of €}, is not considered and quintessence is as-
sumed to dominate at present time, the appropriate value of the parameter A of
the potential can be estimated by choosing the values of N, and N;. Although
the negative power law potential cannot give wy < —0.7, but if the interactions
between the quintessence and the Standard Model particles are taken into ac-
count, the value of wy can be less than —0.7. Generally the coupling constants
of the quintessence to the matter fields is very small, so the fine tuning of their
values is required. This problem can be avoided by introducing some symme-
try (for example, see [37]). Since ¢, ~ m,, then the supergravity correction of
this model should be considered. There are some problems in the supergrav-
ity version of this model. If supersymmetry is assumed to be explicitly broken
at a mass scale my, the superpotential must be modified. The modification of
the superpotential leads to large correction to the quintessence potential and the

a+4
observational condition cannot be satisfied. The potential V = S en /2 can

d)a
be derived from supergravity theory. The value of w,, can be less than —0.7
(= —0.8) for this potential. Moreover, w,, in this case does not depend on «a.

This is a good property of this potential. But if supersymmetry is assumed to

be broken at the mass scale m,, this gives large correction to the quintessence
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potential. Although, the quintessence with simple exponential potential cannot
satisty observational conditions, but if its kinetic term is non-canonical the obser-
vational conditions can be satisfied as shown in Section 3.3. Note that the kinetic
coefficient there is written down without any physical motivations, so this model
is only a mathematical model.

If the parameter w, of quintessence is constant, the relation between V, €2,
and w, can be derived. The existence of scaling solution can be studied by using

this relation. If the conditions for tracking behavior are used, one can see that
a+4

¢a
behavior, and the potentials |/ = %6”4’2/2 and V' ~ exp[—K (¢)] have tracking

the potentials V' = and V' ~ exp[—k¢| have scaling solutions and tracking
behavior, but do not have scaling solutions.

Although quintessence models which are reviewed in this thesis are not
very satisfactory from the observational viewpoint, but they are reasonably ade-
quate to describe the accelerated expansion of the universe qualitatively, and the
coincident problem can be avoided in these models. Quintessence scenario can be
developed in many ways. In string/brane theory, gravity has a special property
and scalar field with various properties can exist, so quintessence scenario can be
modified in many ways by using string/brane theory. Three examples are shown
briefly below.

In the first example, our 3-dimensional universe including the usual mat-
ter fields and forces except for gravity are considered to be confined on the brane
in the higher dimensions of superstring theory, the gravity in this brane will be
different from the 4-dimensional Einstein theory. The Friedmann equation on the

brane is different from Eq. (1.31) and its form is [38]
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where k? = 87G and &} are the 4- and 5-dimensional gravitational constants re-
spectively and C is a constant which denotes “dark” radiation. The p? term plays
an important role in the quintessence scenario [38]. When this term dominates
at the early time of the universe evolution, the energy parameter of quintessence
(£24) with negative power law potential decreases in time. When time increases
the p term will dominate, quintessence will behave as ordinary quintessence with
negative power law and (2, will increase up to the present. Since quintessence
with negative power law potential will start to dominate the universe energy too
early if €2;, is not sufficiently small, then this model has a good property because
24 decreases to a small value before increasing again.

Consider the next example, where quintessence is assumed to be a free

field with non-canonical kinetic term. The Lagrangian of this quintessence is

(39, 40]

C=Pl) oy = S@e) (52
The form of P(x) can be estimated by using the condition ’_chat the model should
be stable [39,40]. In this model, p;, = P and p; = g—ix — P. The energy

density of quintessence (p,) decreases at the same rate as radiation in the radi-
ation dominated epoch. At the beginning of the matter dominated epoch, the
quintessence energy density decreases rapidly to a small value. After that it will
decrease slower than matter energy density and dominates the universe energy at
the present time. Note that some authors call this quintessence as k-essence [40].

Now we come to the example where the equation of state of quintessence

takes the form

A
__2 5.3
P Do ( )

where A is a constant. Fluid with this equation of state was first introduced by

Chaplygin as a model to study lifting force on a plane wing [41] and is known
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as Chaplygin’s gas. Fluid with this equation of state also exists in high energy
physics (see Ref. [42]).
From Eq. (5.3) and energy conservation Eq. (1.16), the energy density

of this quintessence decreases as

Psdpy
= —3da, 5.4
B
pp = ([A+—,
(o) p_fj

where B is an integration constant. If B > 0, one sees from the above equation
that for small a (i.e., a® < B/A) the energy density of this quintessence decreases

with the same rate as matter as

%_@

Py~ (5.5)

For very large a (i.e., a® > B/A), this quintessence behaves as a cosmological

constant as

ps VA, py~—VA (5.6)

For large a eq. (5.5) can be expanded as

[B
Ps VA+ o (5.7)

| B
—VA — a5,
Do + 4Aa

The above equation describes the mixture of cosmological constant v/A with a

Q

Q

scalarfield with %gzﬁQ > V(¢). So by choosing A and B, the energy density of
this quintessence decreases as matter at early time, has the form of a mixture at
the end of matter dominated epoch and behaves as a cosmological constant at

present.
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The potential of a scalar field which corresponds to the equation of state

(5.3) can be calculated as shown below. Since

1. B
SOV =py = A+ 5, (5:8)
1., A
50 =P = T
2 VA+ Ba=5
then
. B
SN/ 77N 5.9
e 59)
and
2a5(A+ Ba™®) — B
V(o) = 5.10
O = AT Bt (5.10)
If the universe is flat (@ = a,/p;), one gets
0 : B
8 L. = : X (5.11)

9a T (Aa® + B)'/2

By integrating the above equation, one gets

¢ 4Bexp(69)
=0 = exp(60)) (512)

Substituting this equation into Eq. (5.10), one obtains

V() = g (cosh 3¢ + (5.13)

cosh 3¢> '

Most quintessence-models assume that the cosmological constant is zero
without any explanation. The cosmological constant can be zero by imposing
some unknown symmetry. Some authors [43,44] suggest that the cosmological
constant can be zero by some adjustment mechanisms, where the cosmological
constant is charaterized by a scalar field which is slowly rolling down its potential
with special form of non-canonical kinetic term [43,44]. In brane theory the
cosmological constant can be small on the brane (our four dimensional world)

but still naturally large in the bulk (hidden dimensions) [14].
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Quintessence is an active area of research in cosmo-particle physics. The
progress in brane theory provides new ideas and impetus for the construction of
quintessence models. Models where dissipative effects [45] and models where the
addition of tensor field [46] to the scalar field have been investigated. The inho-
mogeneous part of quintessence is also being actively investigated to understand

the CMB spectrum, in particular the first Doppler peak [47].
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