Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/81563
Title: การอพยพฝูงชนพร้อมผู้นำในสถานีรถไฟด้วยการเรียนรู้แบบเสริมกำลัง
Other Titles: Crowd evacuation with leaders in railway station using reinforcement learning
Authors: นิธินันท์ สินพันธุ์
Advisors: ลัญฉกร วุฒิสิทธิกุลกิจ
ณัฏฐ์ ลีละวัฒน์
Other author: จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
Issue Date: 2565
Publisher: จุฬาลงกรณ์มหาวิทยาลัย
Abstract: วิทยานิพนธ์ฉบับนี้เสนอการประยุกต์ใช้การเรียนรู้แบบเสริมกำลังเทคนิคที่มีชื่อว่า การเพิ่มประสิทธิภาพนโยบายใกล้เคียง เพื่อฝึกฝนเอเจนต์ให้เป็นผู้นำการอพยพผ่านชุดเครื่องมือเอมแอลเอเจนต์ของโปรแกรมยูนิตี แบบจำลองแรงทางสังคมถูกใช้เพื่อนำเสนอการปรับเปลี่ยนพลวัตของผู้อพยพและอัลกอริทึมเอสตาร์ถูกใช้เพื่อค้นหาเส้นทางอพยพที่สั้นที่สุดของผู้อพยพแต่ละคนจากตำแหน่งเริ่มต้นไปยังทางออก ประสิทธิภาพการอพยพถูกประเมินโดยจำนวนผู้อพยพโดยเฉลี่ยที่ไม่สามารถออกจากสถานีรถไฟฟ้าทดลองได้ตามเวลาที่กำหนดภายใต้สถานการณ์การอพยพที่แตกต่างกัน จากผลการทดสอบพบว่า การอพยพฝูงชนด้วยผู้นำที่ถูกฝึกด้วยการเรียนรู้แบบเสริมกำลังสามารถอพยพผู้อพยพทั้งหมดออกจากสถานีรถไฟฟ้าทดลองได้ตามเวลาที่กำหนด ทั้งนี้เวลาที่ใช้ในการอพยพจะเร็วหรือช้าขึ้นอยู่กับตำแหน่งของผู้อพยพด้วยเช่นกัน
Other Abstract: This thesis proposes the application of a reinforcement learning technique called proximal policy optimization to train the agent to become an evacuation leader via the unity ml-agents toolkit. The social force model is used to present the modification of evacuee dynamics and the a-star algorithm is used to find the shortest evacuation path of each evacuee from the initial location to the exit. Evacuation efficiency is assessed by the average number of evacuees who cannot leave the train station for the specified time under different evacuation situations. Simulation results show that crowd evacuation with leaders trained by reinforcement learning can evacuate all evacuees from the train station for the specified time. However, the time it takes to evacuate will be faster or slower depending on the location of the evacuees as well.
Description: วิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2565
Degree Name: วิศวกรรมศาสตรมหาบัณฑิต
Degree Level: ปริญญาโท
Degree Discipline: วิศวกรรมไฟฟ้า
URI: http://cuir.car.chula.ac.th/handle/123456789/81563
URI: http://doi.org/10.58837/CHULA.THE.2022.853
metadata.dc.identifier.DOI: 10.58837/CHULA.THE.2022.853
Type: Thesis
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
6370457121.pdf3.68 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.